# ROMA <br>  

## Marco Falconi

# An Invitation to Lieb-Thirring Inequalities 

(following mostly [arXiv:2007.09326] by R.L. Frank)

## Outline

1 Historical Overview: the inequality by Lieb and Thirring

2 The Lieb-Thirring inequality for Schrödinger operators
3 An open problem and a conjecture: the value of $K_{d}\left(L_{d}\right)$

4 Generalized inequality for Schrödinger operators

5 Conclusion: the proof of Lieb-Thirring's inequalities

## The starting point: an inequality for orthonormal functions

In 1975, Lieb and Thirring proved a Sobolev-type inequality for a set of orthonormal functions:

## Theorem 1 (Lieb-Thirring 1975)

$\forall d \in \mathbb{N}^{*}, \exists K_{d}>0$ (optimal) s.t. $\forall N \in \mathbb{N}^{*}$ and $\forall\left\{u_{1}, \ldots, u_{N}\right\} \subset H^{1}\left(\mathbb{R}^{d}\right)$ orthonormal in $L^{2}$ :

$$
\sum_{n=1}^{N} \int_{\mathbb{R}^{d}}\left|\nabla u_{n}\right|^{2} \mathrm{~d} x \geq K_{d} \int_{\mathbb{R}^{d}}\left(\sum_{n=1}^{N}\left|u_{n}\right|^{2}\right)^{1+\frac{2}{d}} \mathrm{~d} x .
$$

## Original motivation: a (by then) new (now classical) proof of the Stability of Matter

## Corollary 1

Let $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subset H^{1}\left(\mathbb{R}^{d}\right)$ be a sequence of $L^{2}$-orthonormal functions, and let $\left\{\nu_{n}\right\}_{n \in \mathbb{N}} \subset[0,1]$. Then

$$
\sum_{n \in \mathbb{N}} \nu_{n} \int_{\mathbb{R}^{d}}\left|\nabla u_{n}\right|^{2} \mathrm{~d} x \geq K_{d} \int_{\mathbb{R}^{d}}\left(\sum_{n \in \mathbb{N}} \nu_{n}\left|u_{n}\right|^{2}\right)^{1+\frac{2}{d}} \mathrm{~d} x
$$

where $K_{d}$ is the optimal constant of Theorem 1.

## Corollary 2

Let $d, N \in \mathbb{N}^{*}$, and let $\psi\left(x_{1}, \ldots, x_{N}\right) \in H^{1}\left(\mathbb{R}^{d N}\right)$ be antisymmetric in the exchange of any $x_{i}, x_{j} \in \mathbb{R}^{d}, i \neq j$. Then

$$
\int_{\mathbb{R}^{d N}}|\nabla \psi|^{2} \mathrm{~d} x_{1} \cdots \mathrm{~d} x_{N} \geq K_{d}\|\psi\|_{2}^{-\frac{d}{2}} \int_{\mathbb{R}^{d}} \varrho_{\psi}(x)^{1+\frac{2}{d}} \mathrm{~d} x
$$

where

$$
\varrho_{\psi}(x)=\sum_{n=1}^{N} \int_{\mathbb{R}^{d}(N-1)}\left|\psi\left(x_{1}, \ldots, x_{n-1}, x, x_{n+1}, \ldots, x_{N}\right)\right|^{2} \mathrm{~d} x_{1} \cdots \mathrm{~d} \hat{x}_{n} \cdots \mathrm{~d} x_{N}
$$

is the one-particle density of $\psi$, and $K_{d}$ is the optimal constant of Theorem 1 .

## Remarks

- i Both $K_{d}$ and $1+\frac{2}{d}$ are independent of $N$ !
- $\left\|\varrho_{\psi}\right\|_{1}=N\|\psi\|_{2}^{2}$

```
Proof of Corollary 2 (|\psi| | = 1)
```

$\gamma_{\psi}(x, y):=\sum_{n=1}^{N} \int_{\mathbb{R}^{d}(N-1)} \bar{\psi}\left(x_{1}, \ldots, x_{n-1}, y, x_{n+1}, \ldots, x_{N}\right) \psi\left(x_{1}, \ldots, x_{n-1}, x, x_{n+1}, \ldots, x_{N}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} \hat{x}_{n} \cdots \mathrm{~d} x_{N}$
$\therefore \forall f \in L^{2}\left(\mathbb{R}^{d}\right):$

$$
\left\langle f, \gamma_{\psi} f\right\rangle_{2} \geq 0,
$$

and

$$
\operatorname{Tr} \gamma_{\psi}=\sum_{n=1}^{N}\|\psi\|_{2}^{2}=N
$$

```
Proof of Corollary 2 (cont.)
```

Hence $\gamma_{\psi} \in \mathfrak{S}_{+}^{1}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)$, and thus

$$
\gamma_{\psi}=\sum_{k \in \mathbb{N}} \nu_{k}\left|u_{k}\right\rangle\left\langle u_{k}\right| .
$$

$$
\therefore \int_{\mathbb{R}^{d N}}|\nabla \psi|^{2} \mathrm{~d} x_{1} \cdots \mathrm{~d} x_{N}=-\operatorname{Tr} \nabla \gamma_{\psi} \nabla=\sum_{k \in \mathbb{N}} \nu_{k} \int_{\mathbb{R}^{d}}\left|\nabla u_{k}(x)\right|^{2} \mathrm{~d} x \text {, }
$$

$$
\varrho(x)=\sum_{k \in \mathbb{N}}\left|u_{k}(x)\right|^{2} \quad \forall x \in \mathbb{R}^{d} \text { (Leb.-a.e.) }
$$

The proof follows now immediately from Corollary 1, provided that $\forall k \in \mathbb{N}, \nu_{k} \leq 1$.

## Proof of Corollary 2 (end)

However, $\nu_{k} \leq 1$ since $\left\|\gamma_{\psi}\right\|_{\mathscr{B}\left(L^{2}\right)} \leq 1$. To prove this, the antisymmetry of $\psi$ is crucial. Let $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ be an o.n.b. of $L^{2}\left(\mathbb{R}^{d}\right)$. Then

$$
\psi=\sum_{j \in \mathbb{N}^{N}} \lambda_{\mathrm{j}} e_{j_{1}} \otimes \cdots \otimes e_{j_{N}}
$$

and

$$
\left\langle e_{0}, \gamma_{\psi} e_{0}\right\rangle_{2}=\sum_{n=1}^{N} \sum_{\mathbf{i}, \mathbf{j} \in \mathbb{N}^{N}} \lambda_{\mathbf{i}} \bar{\lambda}_{\mathbf{j}} \delta_{i_{1} j_{1}} \cdots \delta_{i_{n} 0} \delta_{j_{n} 0} \cdots \delta_{i_{N} j_{N}}=\sum_{n=1}^{N} \sum_{\mathbf{j} \in \mathbb{N}^{N}}\left|\lambda_{\mathbf{j}}\right|^{2} \delta_{j_{n} 0}
$$

By antisymmetry $\lambda_{\left(\sigma\left(j_{1}\right), \ldots, \sigma\left(j_{N}\right)\right)}=(\operatorname{sgn} \sigma) \lambda_{\mathbf{j}}$, and therefore

$$
\left\langle e_{0}, \gamma_{\psi} e_{0}\right\rangle_{2}=N!\sum_{0=j_{1}<j_{2}<\cdots<j_{N}}\left|\lambda_{\mathbf{j}}\right|^{2} \leq \sum_{\mathbf{j} \in \mathbb{N}^{N}}\left|\lambda_{\mathbf{j}}\right|^{2}=\|\psi\|_{2}^{2}=1 .
$$

Since the choice of $e_{0}$ is arbitrary, $\left\|\gamma_{\psi}\right\|_{\mathscr{B}\left(L^{2}\right)} \leq 1$.

■ We are now ready to prove that matter consisting of $K$ fixed nuclei and $N$ electrons (seen as nonrelativistic quantum particles) is stable, contrarily to its classical counterpart:

■ let $\psi \in L^{2}\left(\mathbb{R}^{3 N}\right)$ be the (antisymmetric) wavefunction of the $N$ electrons;
■ let $\mathbf{R}=\left(R_{1}, \ldots, R_{K}\right) \in \mathbb{R}^{3 K}$ be the (distinct) positions of the $K$ nuclei, and $\mathbf{z}=\left(Z_{1}, \ldots, Z_{K}\right) \in \mathbb{R}_{+}^{K}$ their charges;

- let

$$
V_{\mathrm{R}, \mathbf{z}}\left(x_{1}, \ldots, x_{N}\right)=-\sum_{n=1}^{N} \sum_{k=1}^{K} \frac{Z_{k}}{\left|x_{n}-R_{k}\right|}+\sum_{1 \leq n<m \leq N} \frac{1}{\left|x_{n}-x_{m}\right|}+\sum_{1 \leq k<\ell \leq K} \frac{Z_{k} Z_{\ell}}{\left|R_{k}-R_{\ell}\right|}
$$

be the Coulomb potential acting on the electrons;

- Then the energy of the system is given by

$$
\mathcal{E}_{\mathbf{R}, \mathbf{z}}[\psi]:=\int_{\mathbb{R}^{3 N}}\left(\left|\nabla \psi\left(x_{1}, \ldots, x_{N}\right)\right|^{2}+V_{\mathbf{R}, \mathbf{z}}\left(x_{1}, \ldots, x_{N}\right)\left|\psi\left(x_{1}, \ldots, x_{N}\right)\right|^{2}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{N}
$$

## Theorem 2 (Stability of Matter)

$\forall \mathbf{R} \in \mathbb{R}^{3 K} \quad$ (such that $\forall k \neq \ell, R_{k} \neq R_{\ell}$ ) and $\forall \mathbf{z} \in \mathbb{R}_{+}^{K}$ :

$$
\mathcal{E}_{\mathbf{R}, \mathbf{Z}}(N):=\inf _{\substack{\psi \in H^{1}\left(\mathbb{R}^{3 N}\right),\|\psi\|_{2}=1 \\ \psi \text { antisymm. }}} \mathcal{E}_{\mathbf{R}, \mathbf{Z}}[\psi] \geq-\frac{3 \pi^{\frac{4}{3}}}{2^{\frac{2}{3}} 5} K_{3}^{-1}(2 z+1)^{2}(N+K),
$$

where $K_{3}$ is the optimal constant of Theorem 1 with $d=3$, and $z=\max _{1 \leq k \leq K} Z_{k}$.

## Lemma 1 (Baxter 1980)

$\forall \mathbf{R} \in \mathbb{R}^{3 K} \quad\left(R_{k} \neq R_{\ell}\right)$ and $\mathbf{Z} \in \mathbb{R}_{+}^{K}$, as multiplication operators

$$
V_{\mathrm{R}, \mathbf{z}}\left(x_{1}, \ldots, x_{N}\right) \geq-\sum_{n=1}^{N} \frac{2 z+1}{\delta_{\mathbf{R}}\left(x_{n}\right)},
$$

where $\delta_{\mathbf{R}}\left(x_{n}\right)=\min _{1 \leq k \leq K}\left\{\left|x_{n}-R_{k}\right|\right\}$.

## Proof of Theorem 2

We use respectively Corollary 2 (Lieb-Thirring) and Lemma 1
(Baxter) to bound the kinetic and potential energy, obtaining for $\|\psi\|_{2}=1:$
$\mathcal{E}_{\mathbf{R}, \mathbf{Z}}[\psi] \geq K_{3} \int_{\mathbb{R}^{3}} \varrho_{\psi}^{\frac{5}{3}}(x) \mathrm{d} x-\int_{\mathbb{R}^{3}} \frac{2 z+1}{\delta_{\mathbf{R}}(x)} \varrho_{\psi} \mathrm{d} x \geq K_{3} \int_{\mathbb{R}^{3}} \varrho_{\psi}^{\frac{5}{3}}(x) \mathrm{d} x-\int_{\mathbb{R}^{3}}\left[\frac{2 z+1}{\delta_{\mathbf{R}}(x)}-\mu\right]_{+} \varrho_{\psi}(x) \mathrm{d} x-\mu N$.
Now Hölder's inequality yields, defining $T=\int_{\mathbb{R}^{3}} \varrho^{\frac{5}{3}}(x) \mathrm{d} x$,

$$
\mathcal{E}_{\mathbf{R}, \mathbf{Z}}[\psi] \geq K_{3} T-\left\|\left[\frac{2 z+1}{\delta_{\mathbf{R}}}-\mu\right]_{+}\right\|_{\frac{5}{2}} T^{\frac{3}{5}}-\mu N
$$

Optimizing with respect to $T$, we get

$$
\mathcal{E}_{\mathbf{R}, \mathbf{Z}}[\psi] \geq-\frac{2 \cdot 3^{\frac{3}{2}}}{5^{\frac{5}{2}}} K_{3}^{-\frac{3}{2}}\left\|\left[\frac{2 z+1}{\delta_{\mathbf{R}}}-\mu\right]_{+}\right\|_{\frac{5}{2}}^{\frac{5}{2}}-\mu N
$$

## Proof of Theorem 2 (end)

Let us now scale w.r.t. $\tilde{\mathbf{R}}=\frac{\mu}{2 z+1} \mathbf{R}$ and optimize w.r.t. $\mu$ obtaining

$$
\mathcal{E}_{\mathbf{R}, \mathbf{Z}}[\psi] \geq-\frac{3^{2}}{5^{\frac{5}{3}}} K_{3}^{-1}(2 z+1)^{2} N^{\frac{1}{3}}\left\|\left[\frac{1}{\delta_{\tilde{\mathbf{R}}}}-1\right]_{+}\right\|_{\frac{5}{2}}^{\frac{5}{3}}
$$

Finally, observe that

$$
\left[\frac{1}{\delta_{\tilde{\mathbf{R}}}(x)}-1\right]_{+}^{\frac{5}{2}} \leq \sum_{k=1}^{K}\left[\frac{1}{\left|x-\tilde{R}_{k}\right|}-1\right]_{+}^{\frac{5}{2}}
$$

and

$$
\int_{\mathbb{R}^{3}}\left[\frac{1}{|y|}-1\right]_{+}^{\frac{5}{2}} \mathrm{~d} y=4 \pi \int_{0}^{1}\left(r^{-1}-1\right)^{\frac{5}{2}} r^{2} \mathrm{~d} r=\frac{5 \pi^{2}}{4}
$$

to conclude, noting that $K^{\frac{2}{3}} N^{\frac{1}{3}} \leq \frac{2^{\frac{2}{3}}}{3}(K+N)$.

## A dual inequality for Schrödinger operators

Theorem 3 (Lieb-Thirring 1975)
$\forall d \in \mathbb{N}^{*}, \exists L_{d} \in \mathbb{R}_{+}$such that $\forall V \in L^{1+\frac{d}{2}}\left(\mathbb{R}^{d}, \mathbb{R}\right)$,

$$
\sum_{n}\left|E_{n}^{-}(-\Delta+V)\right| \leq L_{d} \int_{\mathbb{R}^{d}}[V(x)]_{-}^{1+\frac{d}{2}} \mathrm{~d} x
$$

In addition, $L_{d}=L_{d}\left(K_{d}\right)$ by means of

$$
\left(\left(1+\frac{d}{2}\right) L_{d}\right)^{1+\frac{2}{d}}\left(\left(1+\frac{2}{d}\right) K_{d}\right)^{1+\frac{d}{2}}=1
$$

## Remark

$\langle\cdot,(-\Delta+V) \cdot\rangle_{2}$ is closed and bounded from below on $H^{1}\left(\mathbb{R}^{d}\right)$ by GagliardoNiremberg inequality for any $V \in L^{1+\frac{d}{2}}\left(\mathbb{R}^{d}, \mathbb{R}\right)$.

Proof of Theorem $3 \Leftrightarrow$ Theorem 1
For any $\left\{u_{1}, \ldots, u_{N}\right\} \subset H^{1}\left(\mathbb{R}^{d}\right)$ that are $L^{2}$-orthonormal,

$$
\sum_{n=1}^{N} \int_{\mathbb{R}^{d}}\left(\left|\nabla u_{n}(x)\right|^{2}+V\left|u_{n}(x)\right|^{2}\right) \mathrm{d} x \geq \sum_{n=1}^{N} E_{n}^{-}(-\Delta+V),
$$

with the equality verified if $-\Delta+V$ has at least $N$ negative eigenvalues (counting multiplicity), and the $u_{n}$ are $E_{n}^{-}(-\Delta+V)$-eigenfunctions. Therefore, the inequality of Theorem 3 implies that for all $N \in \mathbb{N}^{*}$, and all $L^{2}$-orthonormal functions $\left\{u_{1}, \ldots, u_{N}\right\} \subset H^{1}\left(\mathbb{R}^{d}\right):$

## Proof of Theorem $3 \Leftrightarrow$ Theorem 1 (end)

$$
\sum_{n=1}^{N} \int_{\mathbb{R}^{d}}\left|\nabla u_{n}\right|^{2} \mathrm{~d} x \geq-\int_{\mathbb{R}^{d}} V(x) \sum_{n=1}^{N}\left|u_{n}(x)\right|^{2} \mathrm{~d} x-L_{d} \int_{\mathbb{R}^{d}}[V(x)]_{-}^{1+\frac{d}{2}} \mathrm{~d} x
$$

The optimal choice of $V \in L^{1+\frac{d}{2}}\left(\mathbb{R}^{d}\right)$ is given by

$$
V(x)=-\left(\frac{2+d}{2} L_{d}\right)^{-\frac{2}{d}}\left(\sum_{n=1}^{N}\left|u_{n}\right|^{2}\right)^{\frac{2}{d}}
$$

thus proving Theorem 1, with $K_{d} \geq \frac{d}{d+2}\left(\frac{2+d}{2} L_{d}\right)^{-\frac{2}{d}}$. Conversely, let $V$ be given. Then by Theorem 1:

$$
\sum_{n=1}^{N}\left|E_{n}^{-}(-\Delta+V)\right| \leq-K_{d} \int_{\mathbb{R}^{d}} \varrho^{1+\frac{2}{d}}(x) \mathrm{d} x+\int_{\mathbb{R}^{d}} V_{-}(x) \varrho(x) \mathrm{d} x
$$

where $\varrho=\sum_{n=1}^{N}\left|u_{n}(x)\right|^{2}$. Optimizing over $\varrho$ we conclude the proof, since $L_{d} \leq \frac{2}{2+d}\left(\frac{d+2}{d} K_{d}\right)^{-\frac{d}{2}}$.

## An open problem

$$
\begin{gathered}
K_{d}=? \\
\left(L_{d}=?\right)
\end{gathered}
$$

## The one-particle constant

$\exists L_{d}^{(1)} \in \mathbb{R}_{+}$such that $\forall V \in L^{1+\frac{d}{2}}\left(\mathbb{R}^{d}, \mathbb{R}\right)$,

$$
\left|E_{1}^{-}(-\Delta+V)\right| \leq L_{d}^{(1)} \int_{\mathbb{R}^{d}}[V(x)]_{-}^{1+\frac{d}{2}} \mathrm{~d} x
$$

Clearly,

$$
L_{d}^{(1)} \leq L_{d}
$$

In a dual fashion, defining $K_{d}^{(1)}$ by

$$
\left(\left(1+\frac{d}{2}\right) L_{d}^{(1)}\right)^{1+\frac{2}{d}}\left(\left(1+\frac{2}{d}\right) K_{d}^{(1)}\right)^{1+\frac{d}{2}}=1
$$

we have that

$$
K_{d} \leq K_{d}^{(1)}
$$

The one particle constants are more convenient for numerical investigation.

## The semiclassical constant

Weyl asymptotics can be used to evaluate $\operatorname{Tr}\left[-\hbar^{2} \Delta+V\right]_{-}$in the limit $\hbar \rightarrow 0$, for suitably regular potentials $V$ (in particular $V \in L^{1+\frac{d}{2}}$ ):

$$
\lim _{\hbar \rightarrow 0} \hbar^{d} \operatorname{Tr}\left[-\hbar^{2} \Delta+V\right]_{-}=\int_{\mathbb{R}^{2 d}}\left[|\xi|^{2}+V(x)\right]_{-} \frac{\mathrm{d} x \mathrm{~d} \xi}{(2 \pi)^{d}}
$$

On the other hand,

$$
\int_{\mathbb{R}^{2 d}}\left[|\xi|^{2}+V(x)\right]_{-} \mathrm{d} x \mathrm{~d} \xi=\frac{2}{2+d} \omega_{d} \int_{\mathbb{R}^{d}}[V(x)]_{-}^{1+\frac{d}{2}} \mathrm{~d} x
$$

where $\omega_{d}$ is the volume of the $d$-dimensional ball of radius one. This follows from an explicit calculation (do it!) of

$$
\int_{\mathbb{R}^{d}}\left[|\xi|^{2}+V(x)\right]_{-} \mathrm{d} \xi .
$$

An open problem and a conjecture: the value of $K_{d}\left(L_{d}\right)$

Therefore,

$$
\begin{gathered}
\lim _{\hbar \rightarrow 0} \hbar^{2+d} \operatorname{Tr}\left[-\Delta+\hbar^{-2} V\right]_{-}=L_{d}^{\mathrm{cl}} \int_{\mathbb{R}^{d}}[V(x)]_{-}^{1+\frac{d}{2}} \mathrm{~d} x \\
L_{d}^{\mathrm{cl}}=\frac{2}{2+d} \frac{\omega_{d}}{(2 \pi)^{d}} \quad(\text { explicit!) }
\end{gathered}
$$

Therefore,

$$
\begin{gathered}
\lim _{\beta \rightarrow \infty} \beta^{-\left(1+\frac{d}{2}\right)} \operatorname{Tr}[-\Delta+\beta V]_{-}=L_{d}^{\mathrm{cl}} \int_{\mathbb{R}^{d}}[V(x)]_{-}^{1+\frac{d}{2}} \mathrm{~d} x \\
L_{d}^{\mathrm{cl}}=\frac{2}{2+d} \frac{\omega_{d}}{(2 \pi)^{d}} \quad \text { (explicit!) }
\end{gathered}
$$

It follows that, defining $\beta=\hbar^{-2}$, for $\beta$ large enough (possibly depending on $V$ ):

$$
\sum_{n}\left|E_{n}^{-}(-\Delta+\beta V)\right|=\operatorname{Tr}[-\Delta+\beta V]_{-} \leq L_{d}^{\mathrm{cl}} \int_{\mathbb{R}^{d}}[\beta V(x)]_{-}^{1+\frac{d}{2}} \mathrm{~d} x
$$

Hence,

$$
L_{d}^{\mathrm{cl}} \leq L_{d}
$$

As before, we can thus define

$$
K_{d}^{\mathrm{cl}}=\frac{d}{d+2} \frac{(2 \pi)^{2}}{\omega_{d}^{\frac{2}{d}}}
$$

by

$$
\left(\left(1+\frac{d}{2}\right) L_{d}^{\mathrm{c} 1}\right)^{1+\frac{2}{d}}\left(\left(1+\frac{2}{d}\right) K_{d}^{\mathrm{cl}}\right)^{1+\frac{d}{2}}=1
$$

obtaining

$$
K_{d} \leq K_{d}^{\mathrm{cl}}
$$

## The Lieb-Thirring conjecture

$$
\begin{aligned}
& K_{d}=\min \left\{K_{d}^{(1)}, K_{d}^{\mathrm{cl}}\right\} \\
& \left(L_{d}=\max \left\{L_{d}^{(1)}, L_{d}^{\mathrm{cl}}\right\}\right)
\end{aligned}
$$

## The current best bounds

$$
\begin{gathered}
K_{d} \geq(0.4771851)^{\frac{1}{d}} K_{d}^{\mathrm{cl}} \\
L_{d} \leq 1.456 L_{d}^{\mathrm{cl}}
\end{gathered}
$$

Numerical simulations suggest that $K_{d}\left(L_{d}\right)=K_{d}^{(1)}\left(L_{d}^{(1)}\right)$ for $d=1,2$ and $K_{d}\left(L_{d}\right)=K_{d}^{\mathrm{cl}}\left(L_{d}^{\mathrm{cl}}\right)$ for $d \geq 3$.

## A generalization for Schrödinger operators

Theorem 4 (Lieb-Thirring 1976)
Let $\gamma \geq \frac{1}{2}$ for $d=1, \gamma>0$ for $d=2$, and $\gamma \geq 0$ if $d \geq 3$. Then $\exists L_{\gamma, d} \in \mathbb{R}_{+}$ such that $\forall V \in L^{\gamma+\frac{d}{2}}\left(\mathbb{R}^{d}, \mathbb{R}\right)$ :

$$
\sum_{n}\left|E_{n}^{-}(-\Delta+V)\right|^{\gamma} \leq L_{\gamma, d} \int_{\mathbb{R}^{d}}[V(x)]_{-}^{\gamma+\frac{d}{2}} \mathrm{~d} x
$$

A (partially) open problem

$$
L_{\gamma, d}=?
$$

Known results (due to Lieb-Thirring, Aizenman-Lieb, Laptev-Weidl, Benguria-Loss, Hundertmark-Lieb-Thomas, Helffer-Robert, Glaser-Grosse-Martin, ...)

## Theorem 5

- $L_{\gamma, d}=L_{\gamma, d}^{\mathrm{cl}}$ if $\gamma \geq \frac{3}{2}$ and $d \geq 1$;
- $L_{\frac{1}{2}, 1}=L_{\frac{1}{2}, 1}^{(1)}$.


## Theorem 6

- $L_{\gamma, d}>L_{\gamma, d}^{\mathrm{cl}}$ if $\gamma<\frac{3}{2}$ with $d=1$, or $\gamma<1$ with $d \geq 2$;
- $L_{\gamma, d}>L_{\gamma, d}^{(1)}$ if $\gamma>\max \left\{2-\frac{d}{2}, 0\right\}$ for $1 \leq d \leq 6$, or $\gamma \geq 0$ for $d \geq 7$.

The main tool in the proof of Theorem 4: the Birman-Schwinger principle (main ideas)

Definition (Birman-Schwinger operator)
Let $V \in L^{\gamma+\frac{d}{2}}\left(\mathbb{R}^{d}, \mathbb{R}\right), \quad \gamma \geq 0, \quad V \leq 0$. The Birman-Schwinger operator $K_{E}$, $E>0$, is defined by

$$
K_{E}:=\sqrt{-V}(-\Delta+E)^{-1} \sqrt{-V}
$$

## Properties of the Birman-Schwinger operator:

- $K_{E} \geq 0$
- $K_{E} \in \mathscr{B}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)$
- $E^{\prime}<E$ implies $K_{E^{\prime}} \geq K_{E}$ ( $K_{E}$ is monotonically decreasing in $E$ )


## Theorem 7 (Birman-Schwinger principle)

Let $V \in L^{\gamma+\frac{d}{2}}\left(\mathbb{R}^{d}, \mathbb{R}\right), \gamma \geq 0, V \leq 0$. In addition, let $n_{E}(V)$ be the number of eigenvalues of $-\Delta+V$ that are less than $E$, and let $N_{1}\left(K_{E}\right)$ be the number of eigenvalues of the Birman-Schwinger operator that are greater than 1. Then,

$$
n_{E}(V)=N_{1}\left(K_{E}\right)
$$

## Thank you for the attention

