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Historical Overview

The starting point: an inequality for orthonormal
functions

In 1975, Lieb and Thirring proved a Sobolev-type inequality for a

set of orthonormal functions:

Theorem 1 (Lieb—-Thirring 1975)

Vd € N*, 3K; >0 (optimal) s.t. VYN € N* and V{uy,...,uy} C HY(R%) or-
thonormal in L?:

2

N

N 1+2
Z/d|Vun|2dw2Kd/d<Z|un|2> dz .

n=1 YR R n=1
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Historical Overview

Original motivation: a (by then) new (now
classical) proof of the Stability of Matter

Corollary 1

Let {up}tnen € HY(R?) be a sequence of L%?-orthonormal functions, and
let {v,}pen C[0,1]. Then

/|Vu | da:>Kd/<
neN

where K; is the optimal constant of Theorem 1.

E:V|u |) %dx

neN
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Historical Overview

Corollary 2

Let d,N € N*, and let 9(zy,..,xy) € HY(R¥™) be antisymmetric in the
exchange of(mulx“xjeﬂw, i+ j. Then

/ V|2dzy -~ dzy = Kaluly? / oyt A,
[RdN |Rd

where

N
gw(x)zzz:l/;N J¢($1w~,$n_p1%$n+p~~7$N)Pd$1”'dxn”‘d$N
RA(N—1

is the one-particle density of v, and K,; is the optimal constant
of Theorem 1.
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Historical Overview

Remarks
m j Both K; and 1+ 2 are independent of N !
m oyl = NlYl3

Proof of Corollary 2 (|[¢fy=1)

N
7¢($7y> :—Z/chb oy Ly 15 Y, g1y - >$N)¢<$17 ey Ly 15 L Ty ee s xN)d‘rl"'dxnmde
n=1JRaN

d(N-1)

2V f e L3(RY): .
)’yw 2 Z 0 )

and

N
Try, =Y [Ul3=N.
n=1
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Historical Overview

Proof of Corollary 2 (cont.)

Hence 'mGGi(LQ([Rd)), and thus

Yop = Zyk’uk><uk‘ .

keN

- / |Vy|?dz, - day = —Tr Vo,V = Zyk/ |Vuy(z)|>dz
RaN keN R4

Q($>:Z|uk($)\2 Vz € R% (Leb.-a.e.)
keN

The proof follows now immediately from Corollary 1, provided that
VEeN, v, <1.
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Historical Overview

Proof of Corollary 2 (end)

However, v, <1 since ||7¢||%<L2> <1. To prove this, the
antisymmetry of ¢ is crucial. Let {e,},cy be an o.n.b. of
L?(R%). Then
b= N, @@
FENN

and

<€077w60 2 _Z Z )\1 j 11]1 ’ 51'”05 ’ ZNJN Z Z ‘)\ ’25

n=14i JeNN 1 jenNN
By antisymmetry Agii)..o(in) = (sgna))\j, and therefore
(€9, Vy€0)2 = N! Z |)‘j‘2 Z A5 ?=[yl3=1.
0=51<jo<<jn JENN

Since the choice of ¢, is arbitrary, [vlggs <1.
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Historical Overview

m We are now ready to prove that matter consisting of K fixed nuclei
and N electrons (seen as nonrelativistic quantum particles) is
stable, contrarily to its classical counterpart:

let ¢ € L?(R3Y) be the (antisymmetric) wavefunction of the N elec-
trons;

let R=(Ry,...,Ry) € R®3X be the (distinct) positions of the K nuclei,
and Z=(Zy,..,Zg) € RE their charges;

let

N K
_ _Z L Pl
O R D) Diress » ED Dl e D DI e

1<n<m<N 1<k<t<K

be the Coulomb potential acting on the electrons;
Then the energy of the system is given by

gn,z[w] = ,431\/ (|V¢($1» >$N)|2 + VR,z<3717 e )|y, axNﬂg)dxl o day
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Historical Overview

Theorem 2 (Stability of Matter)

VR € R*¥ (such that Vk+#/{, R,+ R,) and VZEIRf:

3

] > —22;K3-1<2z+1>2<N+K>,

Exn(N) = in
ra(N) YeH RN Jply=1

antisymm.

where K; 1is the optimal constant of Theorem 1 with d = 3, and

z = maxlgksK Z]C .
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Historical Overview

Lemma 1 (Baxter 1980)

VR € R3K (R, # R,) and Z € IRf, as multiplication operators

N 22+ 1

a n=1 6R(In) 7

VR,z(fﬁl, vy L) >

where Og(x,) =min; . p{|z, — Ryl}-
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Historical Overview

Proof of Theorem 2
We use respectively Corollary 2 (Lieb-Thirring) and Lemma 1
(Baxter) to bound the kinetic and potential enerqgy, obtaining for

[l = 1+

22+ 1 / 5 / 22+ 1
x)de— | ———oy,dr > K S (x)dr— _— x)drx—uN.
@ar— [ S o=k [ of@ar [ [Zrlou] oy@par—n

< wlon

Enalt) 2 K, [ o

R3

Now H&lder’s inequality yields, defining T = ngg@ﬂdx,

2 1
Eaalt) 2 KoT = |[Z= — ] ||, 7% —un.
R +1'5
Optimizing with respect to T, we get
2.35 _sr2z+1 3
SLALEY o [7— ] —uN .
5% 3 5R lquHg 1
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Historical Overview

Proof of Theorem 2 (end)

Let us now scale w.r.t. ﬁ:#“R and optimize w.r.t. p
obtaining

lot

Enalt) > —;’—ngl(?Z + 1N [% - 1LH

Finally, observe that

and

i

to conclude, noting that K3iN3 < Z(K+N). =
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The Lieb-Thirring inequality for Schroédinger operators

A dual inequality for Schrodinger operators

Theorem 3 (Lieb-Thirring 1975)

Vd e N*, 3L, € R, such that YV € L'*%(R%R),

d
]Hgdx.

Z\E —A+V)| <Ld/Rd[V(x)

In addition, Ly;= L4(K,;) by means of

(a+ g)Ld)H‘Q’ (a+ 3)Kd)l+g 1.
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The Lieb-Thirring inequality for Schroédinger operators

(-, (=A+V)-)y is closed and bounded from below on H!(RY) by Gagliardo-
Niremberg inequality for any VeLlts (R4, R).

Proof of Theorem 3 <= Theorem 1
For any {u,...,uy} C H'(R?) that are L%?-orthonormal,

N N
Z/ IV, (2)|2 4 V|u,, ( zz (—A+V),
n=1

with the equality verified if —A+V has at least N negative
eigenvalues (counting multiplicity), and the u, are

E, (—A+V)-eigenfunctions. Therefore, the inequality of Theorem 3
implies that for all N € N*, and all L?-orthonormal functions

{ug, .., un} C HY(R?):
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The Lieb-Thirring inequality for Schroédinger operators

Proof of Theorem 3 <= Theorem 1 (end)

i/w\vuﬁda:z—/ Z]u \2dx—Ld/ [V(x)]ljgdx.

The optimal choice of V € L*%(R?) is given by

Viz) = —(32L,) " (iw)g

24d1, V3. Conversely,

thus proving Theorem 1, with K,;> ;%5(34

let V be given. Then by Theorem 1:
N
> B (—A+ V) g—Kd/ gH?z(x)dH/ V_(x)o(x)dz
n=1 R4 R4

where Q:ijl\u (x)]?. Optimizing over p we conclude the
_d
< 2R,
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An open problem and a conjecture: the value of Kg(Lg)

An open problem
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An open problem and a conjecture: the value of Kg(Lg)

The one-particle constant
ALY € R, such that VV e L*5(R%R),

1+
dr .

Ercas V< [ v

Clearly,

LV <r,.

In a dual fashion, defining Kﬁ” by

1+2 1+4
(+9HL) “(a+KP) =1,

we have that

K, < K.

The one particle constants are more convenient for numerical
investigation.
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An open problem and a conjecture: the value of Kg(Lg)

The semiclassical constant

Weyl asymptotics can be used to evaluate Tr[—h%?A+V]_ in the limit
d
i — 0, for suitably regular potentials V (in particular V € L'*2):

dxdé

(2m)*

1im A Tr[-h2A+ V] = [ [I€? +V(2)]
h—0 R2d -

On the other hand,

]1+%

2
2+dwd/R'd[V<l’) d$>

where w; is the volume of the d-dimensional ball of radius one.
This follows from an explicit calculation (do it!) of

[ter+vie at.

/H$+V@]m&:
R2d
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An open problem and a conjecture: the value of Kg(Lg)

Therefore,
a
lim A2t Tr[-A+A72V]_ = Lgl/ [V(x)]1+2dx :
h— Rd -
2 w
cl __ d ..
Ld = m (27‘(’)d (expllc:l.t! )
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An open problem and a conjecture: the value of Kg(Lg)

Therefore,

d
lim (42 Te[—A + fV]_ = Lgl/ V) Pax,
R4

B—00

clzi Wa
4 24d(2m)d

(explicit!)

It follows that, defining S=h"2, for B large enough (possibly
depending on V) :

Z‘EE(_A + V)| =Tr[-A+BV]_ < Lgl/ [5V($)]i+%dx _
n |Rd

Hence,

L3 <L,.
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An open problem and a conjecture: the value of Kg(Lg)

As before, we can thus define

d (2m)?
cl _
Ki =33 2
Wa
by
1+2 1+4
(a+drg) “(a+3Kg) =1,
obtaining

K, < K§-.
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An open problem and a conjecture: the value of Kg(Lg)

The Lieb-Thirring conjecture

K, =min{K" K3}

1) rc
(Lg=max{L}’, L'})
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An open problem and a conjecture: the value of Kg(Lg)

The current best bounds

K, > (0.4771851) 7 K5*

Ly < 1.456 L5*

Numerical simulations suggest that Kd(Ld):K;D(Lill)) for d=1,2 and
K, (L,) = K$*(LSY) for d>3.
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Generalized inequality for Schrédinger operators

A generalization for Schrodinger operators

Theorem 4 (Lieb—-Thirring 1976)

Let 72% for d=1, v>0 for d=2, and v>0 if d>3. Then ElIL%dG[RJr
such that VV € L7 % (R%R):

1B A4V € Ly [ V] Har.
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Generalized inequality for Schrédinger operators

A (partially) open problem

1;77d — ?
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Generalized inequality for Schrédinger operators

Known results (due to Lieb-Thirring,
Aizenman-Lieb, Laptev-Weidl, Benguria-Loss,
Hundertmark-Lieb-Thomas, Helffer—Robert,
Glaser—-Grosse—-Martin,..)

IL%d:L,(;ld if 72% and d>1;
lLll—L(l)

wm L, >LsYy if <3 withd=1, or y<1 with d>2;

-L%d>L<121 if yv>max{2— ,0} for 1<d<6, or v>0 for d>17.
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Conclusion: the proof of Lieb-Thirring’s inequalities

The main tool in the proof of Theorem 4: the
Birman-Schwinger principle (main ideas)

Definition (Birman—-Schwinger operator)

Let V€L7+%(Rd,ﬂ?), v2>0, V<0. The Birman-Schwinger operator K,
E >0, is defined by

Kg:=V—V(-A+E)"'W-V.
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Conclusion: the proof of Lieb-Thirring’s inequalities

Properties of the Birman-Schwinger operator:

20

w | K € B(L*(RY))

(] implies (Kp is monotonically decreasing in E)
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Conclusion: the proof of Lieb-Thirring’s inequalities

Theorem 7 (Birman—-Schwinger principle)

Let Ve L2 (R%,R), v>0, V<0. In addition, let ng(V) be the number
of eigenvalues of —A+V that are less than E, and let N,(Kg) be

the number of eigenvalues of the Birman-Schwinger operator that are
greater than 1. Then,

Ing(V) = Ny(Kp) |
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Thank you for the attention

Thank you for the attention
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