Which magnetic fields support a zero mode?
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Remembrance of things past
Hydrogenic Atom in a magnetic field
Ha = (—iV — A(x))* = =
acts on wavefunctions ¥ (x) € C

B(x) = curlA(x)
Denote the ground state energy by E4(Z, B)

Kato's Diamagnetic inequality

(—iV = A (x)]? = V] (x)| P

Eq4(Z,B) > E4(Z,0) , gauge invariance!

Diamagnetism



This is not the whole truth: Electrons carry spin
Hydrogenic atom in a magnetic field

H=(-iV—-AKX))?—-0-B(x)— Z

x|

Pauli operator acts on spinors

¢:(Z;> , Y1, € C /R3|¢;1|2+|,¢2|2dle

_ - B3 B1 — iB>
B=curlA, o B_<Bl+i82 B,

For B large
E(Z,B)= inf (1 HY) > o0

The Hamiltonian is gauge invariant and ground state energy depends on B
Paramagnetism



The ground state energy should be compensated by the field energy

& A) =l (1~ A2 | Ll Y MLORS

s x| \ 87ra2

a = — =~ —— ,Sommerfeld Fine Structure Constant

he 137

o (—iV = A2 = (=iV = A(X))> — o - B(x)

E(Z) = inf{E(Z,B)+

|dx}—|nf5(111, A) > —o0?



Zero Modes

o (=IV = A(x))d(x) =0 (1)
0=(23) me (1 7)o (5 %)
o (—iV — A(x))
_ (  —ids—As iy — 0) — (A1 — iAy) )
—i01 + 02 — (A1 + iA2) +i03 + A3

¢:(Z;> 7¢15’¢2€C, /R3|w1|2+|,¢2|2dle

B = curlA € L2(R3 . R3)



0 - (¥ — AX))i(x) = 0

/\¢\2dx_1 / |B(x)|?dx < oo

An(x) = MOX) 1 (x) = A¥25(\x)

- (=1V = A())¥a(x) =

2
(nA) = N2 | Ll s [ 1BGoRd

3 ]X| T gra?

Hydrogen is unstable if and only if there is a zero mode
(Frohlich, Lieb, Loss 1986)



Zero modes (Loss-Yau, 1986)
1+io-x
(14 [x[?)3/2

3
(v e
w=(p,00) .

Y= ¢ , ¢ a constant spinor (2)

A(x) = 1— [x]})w + 2(w - x)x + 2w A x)

(6, 90) = a&bl + %wz ,inner product on C?

Field lines are pull back of the Hopf fibration on S3
under stereographic projection



Sobolev’s inequality

f:RY > C
2/p
/ |Vf(x)\2dx >S </ f(x)|pdx>
Rd Rd
_2d
p_d*2’

d(d—2
Sd — ( Z ) |Sd|2/d7
and there is equality if and only if up to translations

2 (422
f(X): <C*)\+>\> ,A>0

Rodemich (1966), Talenti (1976), Aubin (1975)



Measure of a potential supporting a bound state
with negative energy

—A—-V(x),V(x)>0,V(x) =0 |x| = 0.

If one seeks this measure in terms of an LP
norm of the potential, the only possibility is

V|35 , scaling V(x) = A2V/(Ax
3/

/ V|2 / VIFdx > [IFI2(Ss — | V]]32)
R3 R3

Necessary condition for a bound state is that ||V||3/» > S3.
This condition is sharp!



A simple necessary condition for zero modes:

o(—iV=Ap =0= [o(=iV-A)]*p = (-iV—-A?Yp—0c-Bp =0
I(=1V = A3 = /R3 B(x) - (¢, o) (x)dx < [Bll3 2l [13
(W, o0)| =[] = V/{¥,¥)

by the diamagnetic inequality

I(=1V = A)llz > [ VI¥l3

hence a necessary condition for a zero mode is

1Bll3j2 = 53



We may assume that A € L3(R3 : R3).

X—y
AX:const./ A B(x)dx
(x) T (x)

satisfies
curlA = B ,divA=0

The estimate follows from the Hardy-Littlewood-Sobolev inequality

1 1 A 1
il < Codllfllg S =14 =
H|X’)‘ HP P, ” Hq q d p

Theorem
Fix3/2 < p < oo and let 1) € LP(R3 : C2) be a solution of the zero
mode equation (1). Then ¢ € L"(R3: C?) for any 3/2 < r < cc.



A not so simple improvement
o (=iV = A(X)(x) =0, A€ (R R%), (3)
B = curlA € [3/?(R3; R%) .

Theorem

Let B € [3/2(R3 : R3) be a magnetic field, i.e., divB =0. A
necessary condition for (3) to have a weak solution

0 # ¢ € LP(R3 : C?) for some 3/2 < p < oo is that

1Bll3/2 > 2S5 -

Absence of eigenvalues for the Pauli-Operator is a difficult problem
Cossetti, Fanelli, and Krejcitik (2020)



Diamagnetic inequality

v = e[|
(=i = A))e(x)] = [V[9[[* + [V S(x) — A(x) ]
> |V[ylf? .
Has interesting consequences

| B 1
(=19 = A 2| < =



Lemma

Let ¢ € LP(R3 : C?), p > 3/2 satisfy o - (—iV — A)p = 0. Then
1 € HY(R3 : C?), and |¢| € HY(R3) as well and moreover, almost
everywhere in R3,

IV[Y]]> < S [(=iV = Ayl

Wi N

David M. J. Calderbank, Paul Gauduchon, and Marc Herzlich (2000)
Paul M. N. Feehan (2001)
Kato-Yau inequality
Elias Stein



An algebraic fact

v € C? | spinor ,B = (01, P2, 03) € R3 .

(N8 ® v)) Bjv — ajo Bv for j=1,2,3.
i:aj(rlw@v))j:o jor=1,/=123
j=1

BRV,yW)= Zﬁﬂj(v, w)
J
(NBev),yow))=(Bev,NHew))

NGB @ V)P = S16RIE



‘w‘s Y/ W|2 + €2

Ojlple = Re<,$57aj¢> = Re<’$67(3j - iAj)¢>

Vil
VIl

v VIl
[Yle V[l

V]| = Yyl = Re< (v - fA)w> @)

(v_mwqu_m»w_%w«V—mw~4WV—mwm,

v VYl

V||| = Re { 2 Y¥le
VIl e<|wr€ NN

I'I(V—iA)q/;> .



_ b TIOLY (5y)
V|| =Re{N (- (V- .
VIl e< QWAVWM (V=iA)y

Y VYl
91 [VIle]

WMJSW( )\w—mww

(s @ v = 2182IP.

v=1/lYl
B = v|¢’5/|v|¢|5|

€ tend to zero yields the claimed inequality.



The improvement on the diamagnetic inequality
is not the whole story. We suspect that the Loss-Yau zero modes
are the optimizers.
1+io-x
L+ 7

2 = (1 |x|?) 2

P =

¢ ,® a constant spinor

is an optimizer for the Sobolev inequality
By the way: A straightforward computation shows that

1By |l3/2 = 453
which is still off by a factor of 2 !!



Lemma
For any ) € HY(R3 : C?) and any € > 0, the function |1/)|i/2 is

weakly differentiable with V|2 € [2(R3) and one has almost
everywhere and in the sense of L*,

1 2
[VIgi?| = 2Re< |:f|£ w>— <2|wrglrvw\2 :Z::@ rwW).
(5)

The proof is a straightforward computation with Sobolev functions



2
MUEE

1 ) .

ERe <(V — iA) Ma,(v - /A)w>

1 |1/)|2 2
T (2|(v Al =3, 1V )
_1 e — i v — i

=t <(V R A”’>

(209 - Ay 3|V IwlR) -

Al 4\¢I3

VIl -



By Lemma 3

2|(V —iAy? = 3|V[y||* > 0

and hence

NG

2 1 NV -
< SRe <(v - /A)m, (V- /A)1/1>

1/2|? 1 on Y . >
/RJWME ‘ dx < 2Re/Ra<(V A (VA ) dx
1 (1, o)

|l

2
<[ Beg™

2 R3 W‘E

dx




Letting e — 0

J.

2 1
VI 2[ < 5 [ 1Bl (4

1
Ssllvlls < 51IBlls2llvlls

yields the result



Is this result optimal?

__ 1 vrtz

= \/§r3/2 \)}—r',% 9
o-X=ry

and
1
2 e
P =3 -
Now consider the monopole A-field

(—y,x, 0)
r(r+ z)

(8

-

curlA = g% .
r

We also have that

I B == . 11
oA =ig ; ( hiy ) ,(—I)U-V¢—I§ﬁr5/2




o - [(~iV) — Al =0

if we choose g = %

11
1/22 _ =+
VI = g1
1(B-0y) 11
2 [l AP

This ‘saturates’ ().



Euler-Lagrange equation for the Sobolev constant

~Af—f>=0
Regular solution up to translation

~1/2
fi(x) = 34 <i i sz)

Singular solution up to translation

1, _
(x) = glxI 72

The function |x|~/2 is ‘optimizer’ for Hardy's inequality

1 [ |f(x)]
f(x)|%dx > =
/R3|V (x)] dx_4/]R3 M dx




/R3|Vf(x)|2dx/ V(x)f(x)?%dx

R3
> |Vf*(x)|2dx—/ V*(x)F*(x)?dx
R3 R3

* 2
> \Vf*(x)]zdx—/ O e sup{Ix2 V()
R3 R3 |X’2 x

A necessary condition for the existence of a negative bound state is

8% v

. 1
w3/2 = sup{|x|>V*(x)} > 2



Theorem

Let B € L?,,’.,/z(]R3 : R3) be a magnetic field, i.e., div B = 0. If (1)

has a weak solution 0 # ¢ € H}(R3 : C?), then
1 /4n\??
B S )
81> 5 (%)

sup |x[?|B[*(x) >
x€ER3

or, equivalently,

N =

. 1 X . .
The monopole field 2« IS an optimzer



Theorem
Assume that \ € L3(R3) is a real function. If the equation

—io - V) = 3A(x)V

has a weak solution 0 # v € LP(R3 : C?) for some 3/2 < p < oo,
then

132
A <[ AP ")
There is equality in (7) if
1
M =1

in which case (2) is a solution.



—io -V =3\(x)v
we consider again the operator
1
NB®Y); = By — 3900 BY

but proceed in a slightly different manner by considering
. . 1 .
M(0; — iX(x)oj)¢ = (0j — iX(x)oj)p — §Ujg (V= iX(x)o)o .

Lemma

Let ¢ € LP(R3 : C?), p > 3/2 satisfy —ic - Vi = 3X\(x). Then
¥ € HY(R3 : C?), and |¢| € HY(R3) as well and moreover, almost
everywhere in R3,

3|VIy[? < 2|[V — iMx)ole]? . (8)



With similar computations as before we find

J.

2
vw\lﬂ‘ dx < 3/}1{3 A2[p| dx .

2/3
S$3<3 (/ |)\|3dx)
R3

1
AMX) = —5
saturates this inequality and with

1+io-x

e
we find
. 3
—I10 - Vw = mw .



The results for the zero modes in magnetic fields hold in any odd dimension.

In the case where the potential is a scalar function the results
hold in all dimension > 2.

If we assume that A(x) > 0 and the solution ¢ smooth,
the sharp estimate follows from Hijazi's inequality:
Dirac operator D on S? (metric g)

8u = e2ug >Du¢u = (e_%uDe%u@/))
u
Hijazi (1991)

d
)\1(Du)2 >

= mh(/—u) ;

(d+2) (d—2)

L,=e 2 YLle 2

L conformal Laplacian on S¢
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