

New results on the Lieb-Thirring inequality

Mathieu LEWIN

(CNRS & Paris-Dauphine University)

with Rupert L. Frank (Caltech & Munich) and David Gontier (Paris-Dauphine)

The nonlinear Schrödinger equation for orthonormal functions II. Application to Lieb-Thirring inequalities. Comm. Math. Phys. (2021), arXiv:2002.04964. The periodic Lieb-Thirring inequality, ArXiv e-prints (2020). To Ari Laptev on the occasion of his 70th birthday, arXiv:2010.02981.

Como-Milano-Napoli Mathematical Physics Online Seminar, Feb. 8th, 2021

Gagliardo-Nirenberg-Sobolev

$$H^1(\mathbb{R}^d) = \left\{ f \in L^2(\mathbb{R}^d) \ : \ \nabla f \in L^2(\mathbb{R}^d) \right\} \hookrightarrow L^p(\mathbb{R}^d) \text{ for all } \begin{cases} 2 \le p \le \infty & \text{if } d = 1 \\ 2 \le p < \infty & \text{if } d = 2 \\ 2 \le p \le \frac{2d}{d-2} & \text{if } d \ge 3 \end{cases}$$

$$\left(\int_{\mathbb{R}^d} |u(x)|^p \, dx\right)^{\frac{4}{d(p-2)}} \leq C_{p,d}^{\mathsf{GNS}} \left(\int_{\mathbb{R}^d} |u(x)|^2 \, dx\right)^{\frac{(2-d)p+2d}{d(p-2)}} \int_{\mathbb{R}^d} |\nabla u(x)|^2 \, dx$$

Optimizer **unique** up to translations, dilations and multiplication by a phase, given by (radial positive) solution to **nonlinear Schrödinger equation (NLS)**

$$-\Delta Q - Q^{p-1} + Q = 0$$

At
$$p = \frac{2d}{d-2}$$
 (Sobolev), $Q(x) = (1+|x|^2)^{\frac{2-d}{2}}$ solves $-\Delta Q = Q^{p-1}$ (Emden-Fowler)

NLS important in applications: Bose-Einstein condensation, nonlinear optics, water waves, Langmuir waves in plasmas, etc

Gagliardo '59, Nirenberg '59, Sobolev '63, Strauss '77, Gidas-Ni-Nirenberg '81, Berestycki-Lions '83, Weinstein '83, Coffman '72, Kwong '89, McLeod '93

Spectral interpretation

Introduce the **dual variable** V to the function $|u|^2 \in L^{\frac{p}{2}}(\mathbb{R}^d, \mathbb{R})$

$$V \in L^{\gamma + \frac{d}{2}}(\mathbb{R}^d, \mathbb{R}), \quad \gamma + \frac{d}{2} = \left(\frac{p}{2}\right)' \iff \gamma = 1 - \frac{d}{2} + \frac{2}{p - 2} \begin{cases} \geq \frac{1}{2} & \text{for } d = 1 \\ > 0 & \text{for } d = 2 \\ \geq 0 & \text{for } d \geq 3 \end{cases}$$

Lemma (GNS ⇔ spectral bound)

The lowest (negative) eigenvalue of the self-adjoint operator $-\Delta + V(x)$ satisfies

$$\left|\lambda_1(-\Delta+V)\right|^{\gamma} \leq L_{\gamma,d}^{(1)} \int_{\mathbb{P}^d} V(x)_-^{\gamma+\frac{d}{2}} dx$$

with the best constant $L_{\gamma,d}^{(1)}=\left(\frac{2\gamma}{2\gamma+d}\right)^{\gamma+\frac{d}{2}}\left(\frac{d}{2\gamma}\right)^{\frac{d}{2}}\left(C_{p,d}^{\text{GN}}\right)^{\frac{d}{2}}$ (including the case $\gamma=0$).

Proof. Variational principle
$$\lambda_1(-\Delta+V)=\inf\left\{\int_{\mathbb{R}^d}|\nabla u|^2+V|u|^2\ :\ \int_{\mathbb{R}^d}|u|^2=1\right\}$$

$$\int_{\mathbb{R}^d} |\nabla u|^2 + V|u|^2 \ge \|\nabla u\|_{L^2}^2 - \|V_-\|_{L^{\gamma + \frac{d}{2}}} \|u\|_{L^p}^2 \ge \|\nabla u\|_{L^2}^2 - \|V_-\|_{L^{\gamma + \frac{d}{2}}} \left(C_{p,d}^{\mathsf{GN}} \|\nabla u\|_{L^2}^2\right)^{\frac{d(p-2)}{2p}}$$

Lieb-Thirring inequality

$$\sum_{n=1}^{N} |\lambda_n(-\Delta+V)|^{\gamma} \le L_{\gamma,d}^{(N)} \int_{\mathbb{R}^d} V(x)_-^{\gamma+\frac{d}{2}} dx, \qquad \gamma \begin{cases} \ge \frac{1}{2} & \text{for } d=1 \\ > 0 & \text{for } d=2 \\ \ge 0 & \text{for } d \ge 3 \end{cases}$$

with the best constant $L_{\gamma,d}^{(N)} \leq NL_{\gamma,d}^{(1)}$, non-decreasing with N

Theorem (Lieb-Thirring '75–76)

We have $\lim_{N\to\infty}L_{\gamma,d}^{(N)}=L_{\gamma,d}<\infty$ for all γ as before, hence

$$\sum_{n=1}^{\infty} |\lambda_n(-\Delta+V)|^{\gamma} \leq L_{\gamma,d} \int_{\mathbb{R}^d} V(x)_-^{\gamma+\frac{d}{2}} dx$$

- γ not an end point by Lieb-Thirring '75–76
- $\gamma=$ 0 in $d\geq$ 3 by Cwikel-Lieb-Rozenblum '72–77
- $\gamma = 1/2$ in d = 1 by Weidl '96
- inequality is **extensive**, think of $V = v + v(\cdot R)$

Main application: large fermionic systems, used by Lieb-Thirring '75 to give a simplified proof of the stability of matter (Dyson-Lenard '67)

R.L. Frank, The Lieb-Thirring inequalities: Recent results and open problems, arXiv:2007.09326 (2020)

Lowest kinetic energy at fixed marginal

For $\Psi \in L^2((\mathbb{R}^d)^N, \mathbb{C})$ with $|\Psi|^2$ symmetric and $\|\Psi\|_{L^2} = 1$, define the marginal

$$\mu_{\Psi}(x) = \int_{(\mathbb{R}^d)^{N-1}} |\Psi(x, x_2, ..., x_N)|^2 dx_2 \cdots dx_N.$$

Theorem (Hoffman-Ostenhof '77)

$$\int_{\mathbb{R}^{dN}} \left| \nabla \Psi \right|^2 \geq \frac{N}{N} \int_{\mathbb{R}^d} \left| \nabla \sqrt{\mu \psi}(x) \right|^2 dx$$

with equality if and only if $\Psi(x_1,...,x_N) = e^{i\theta} \prod_{n=1}^N \sqrt{\mu_{\Psi}(x_n)}$.

Theorem (Lieb-Thirring '76)

If Ψ is anti-symmetric, we have

$$\int_{\mathbb{R}^{dN}}\left|\nabla\Psi\right|^{2}\geq c_{d}^{LT}N^{1+\frac{2}{d}}\int_{\mathbb{R}^{d}}\mu_{\Psi}(x)^{1+\frac{2}{d}}\;dx.$$

Proof. This is the dual of LT at $\gamma = 1$:

$$\int_{\mathbb{R}^{dN}} |\nabla \Psi|^2 - N \int_{\mathbb{R}^d} \mu_{\Psi} V = \left\langle \Psi, \left(\sum_{n=1}^N -\Delta_{x_n} - V(x_n) \right) \Psi \right\rangle$$

$$\geq \lambda_1 \left(\sum_{n=1}^{N} -\Delta_{x_n} - V(x_n) \right) = \sum_{n=1}^{N} \lambda_n (-\Delta - V) \geq -L_{1,d} \int_{\mathbb{R}^d} V_+^{1+\frac{d}{2}}$$

Scenarii for the best constant $L_{\gamma,d}$

$$\sum_{n=1}^{N} |\lambda_n(-\Delta+V)|^{\gamma} \leq L_{\gamma,d}^{(N)} \int_{\mathbb{R}^d} V(x)_-^{\gamma+\frac{d}{2}} dx, \qquad \gamma \begin{cases} \geq \frac{1}{2} & \text{for } d=1 \\ > 0 & \text{for } d=2 \\ \geq 0 & \text{for } d \geq 3 \end{cases}$$

- **1** $L_{\gamma,d}=L_{\gamma,d}^{(N)}$ attained for $V\in L^{\gamma+\frac{d}{2}}(\mathbb{R}^d)$ with $N<\infty$ eigenvalues
- **②** $L_{\gamma,d}$ attained for $V \in L^{\gamma + \frac{d}{2}}(\mathbb{R}^d)$ with infinitely many eigenvalues
- **3** $L_{\gamma,d}$ "attained" for $V \in L^{\gamma+\frac{d}{2}}_{loc}(\mathbb{R}^d) \setminus L^{\gamma+\frac{d}{2}}(\mathbb{R}^d)$ with **both sides being infinite**

$$\lim_{R \to \infty} \frac{\sum_{n=1}^{\infty} \left| \lambda_n (-\Delta + V \mathbb{1}_{B_R}) \right|^{\gamma}}{\int_{B_R} V(x)_-^{\gamma + \frac{d}{2}} dx} \stackrel{?}{=} L_{\gamma, d}$$

1 $L_{\gamma,d}$ not attained in any reasonable sense

Known results:

- happens at $\gamma \in \{\frac{1}{2}, \frac{3}{2}\}$ in d=1 where $L_{\gamma,1}=L_{\gamma,1}^{(1)}$
- happens for all $\gamma \geq \frac{3}{2}$ in $d \geq 1$ with $V \equiv -{\sf cnst}$ (semi-classical)

Lieb-Thirring conjecture

For $V \equiv -\mu < 0$, semi-classics gives

$$\frac{\sum\limits_{n=1}^{\infty} \left| \lambda_{n} (-\Delta - \mu \mathbb{1}_{\mathcal{B}_{R}}) \right|^{\gamma}}{\int_{\mathcal{B}_{R}} V(x)_{-}^{\gamma + \frac{d}{2}} dx} \underset{R \to \infty}{\sim} \frac{\iint_{\mathbb{R}^{2d}} (|p|^{2} - \mu \mathbb{1}_{\mathcal{B}_{R}}(x) \leq 0)_{-}^{\gamma} \frac{dx \, dp}{(2\pi)^{d}}}{\mu^{\gamma + \frac{d}{2}} |\mathcal{B}_{R}|} = \int_{\mathbb{R}^{d}} (|p|^{2} - 1)_{-}^{\gamma} \frac{dp}{(2\pi)^{d}} =: L_{\gamma, d}^{\text{sc}}$$
296 E. H. LIEB AND W. E. THIRRING

Conjecture (Lieb-Thirring '76)

We have $L_{\gamma,d} = \max (L_{\gamma,d}^{(1)}, L_{\gamma,d}^{sc})$.

Situation now known to be more complicated

For instance, $L_{\gamma,d} > L_{\gamma,d}^{\rm sc}$ for $\gamma < 1$

Helffer-Robert '90

Optimal potential cannot have $N < \infty$ for $\gamma > \max\{0, 2 - \frac{d}{2}\}$

$$\sum_{n=1}^{N} |\lambda_n(-\Delta+V)|^{\gamma} \leq L_{\gamma,d}^{(N)} \int_{\mathbb{R}^d} V(x)_-^{\gamma+\frac{d}{2}} dx, \qquad \gamma \begin{cases} \geq \frac{1}{2} & \text{for } d=1 \\ > 0 & \text{for } d=2 \\ \geq 0 & \text{for } d \geq 3 \end{cases}$$

Theorem (Non-optimality of finite N, Frank-Gontier-ML '21)

- ▶ Let $d \ge 1$ and $\gamma > \max\left\{0, 2 \frac{d}{2}\right\}$. There exists a infinite sequence $N_1 = 1 < N_2 = 2$
- $< N_3 < \cdots$ such that $L_{\gamma,d}^{(N_j-1)} < L_{\gamma,d}^{(N_j)}$. In particular, $L_{\gamma,d} > L_{\gamma,d}^{(N)}$ for all $N \in \mathbb{N}$.
- ▶ For any $N = N_j$, there exists an optimal potential $V_N < 0$ for $L_{\gamma,d}^{(N)}$. Choosing the normalization $\int_{\mathbb{R}^d} |V_N|^{\gamma + \frac{d}{2}} = 1$, the corresponding eigenfns solve the NLS-type system

$$\left(-\Delta - \underbrace{\left(\frac{2\gamma}{L_{\gamma,d}^{(N)}(d+2\gamma)}\sum_{n=1}^{N}|\lambda_{n}|^{\gamma-1}|u_{n}|^{2}\right)^{\frac{1}{\gamma+\frac{d}{2}-1}}}_{-V_{N}}\right)u_{k} = \lambda_{k} u_{k}, \qquad k = 1, ..., N \quad (1)$$

d	0		$\frac{1}{2}$		1	$\frac{3}{2}$	
1					?		$N = \infty$
2			?			$N=\infty$	
3		?		$N = \infty$			
<u>≥</u> 4			$N = \infty$				

Sketch of proof

Lemma 1 (existence and decay)

Let $\gamma>1/2$ in d=1 and $\gamma>0$ in $d\geq 2$. If $L_{\gamma,d}^{(N)}>L_{\gamma,d}^{(N-1)}$ then $L_{\gamma,d}^{(N)}$ admits an optimizer $V_N\in L^{\gamma+\frac{d}{2}}(\mathbb{R}^d)$, with $\lambda_N<\lambda_{N+1}\leq 0$. It is a real analytic function which decays exponentially fast at infinity. The corresponding eigenfunctions solve the NLS system (1).

Only $\gamma \geq 1$ in paper (use of dual inequality), general case in preparation. Uses concentration-compactness (Lions '84), weak continuity of eigenvalues under tight convergence of potentials

Lemma 2 (binding)

Assume that $\gamma > \max\left\{0, 2 - \frac{d}{2}\right\}$. If $L_{\gamma,d}^{(N)}$ admits an optimizer then $L_{\gamma,d}^{(2N)} > L_{\gamma,d}^{(N)}$.

Proof of the theorem:

- $L_{\gamma,d}^{(1)}$ has the NLS optimizer Q, hence $L_{\gamma,d}^{(2)} > L_{\gamma,d}^{(1)}$ by Lemma 2
- $L_{\gamma,d}^{(2)}$ has an optimizer by Lemma 1
- $L_{\gamma,d}^{(4)} > L_{\gamma,d}^{(2)}$ by Lemma 2
- either $L_{\gamma,d}^{(3)} > L_{\gamma,d}^{(2)}$ then take $N_3 = 3$, or $L_{\gamma,d}^{(4)} > L_{\gamma,d}^{(3)} = L_{\gamma,d}^{(2)}$ then take $N_3 = 4$
- iterate

Proof of $L_{\gamma,d}^{(2N)} > L_{\gamma,d}^{(N)}$ (Lemma 2) for N=1

$$-\Delta Q - Q^{p-1} + Q = 0$$

For
$$V_R(x) = -\left(Q(x - Re_1)^2 + Q(x + Re_1)^2\right)^{\frac{1}{\gamma + \frac{d}{2} - 1}}$$

- ullet recall that $Q(x) \underset{|x| \to \infty}{\sim} C|x|^{rac{1-d}{2}} e^{-|x|}$
- estimate the exponentially small deviation of the eigenvalues
- due to nonlinear quantum tunnelling between the two wells
- competition with orthonormalization of $Q(\cdot Re_1), Q(\cdot + Re_1)$ which generates a 2nd order error $\sim e^{-4R}$
- favorable for $2 + \frac{2}{\gamma + \frac{d}{2} 1} < 4 \iff \gamma > 2 \frac{d}{2}$

Statistical mechanics point of view

$$\left(-\Delta - c\left(\sum_{n=1}^{N} |\lambda_n|^{\gamma-1} |u_n|^2\right)^{\frac{1}{\gamma+\frac{d}{2}-1}}\right) u_k = \lambda_k u_k, \qquad k = 1, ..., N$$

- ullet \simeq N quantum particles bound together by their own nonlinear potential V_N
- = nonlinear Hartree model with Tsallis-type entropy $tr(\Gamma^{\frac{\gamma}{\gamma-1}})$, where $\Gamma=1$ -PDM
- existence for a sequence $N_j \to \infty$ suggests a statistical mechanics behavior, with the particles forming a large cluster growing with N (scenario 3)

Conjecture (Frank-Gontier-ML '21)

Normalize V_N in the manner $\|V_N\|_{L^\infty(\mathbb{R}^d)}=1$. Then for $\gamma>\max\{0,2-d/2\}$, V_N converges to a **periodic function** (possibly constant) which is an "optimizer" of $L_{\gamma,d}$.

Speculative phase diagram:

 $\gamma = \frac{3}{2}$ in d = 1: an integrable system related to KdV equation

$$rac{1}{2}$$
 $rac{3}{2}$ $L_{\gamma,1}\stackrel{?}{=}L^{(1)}_{\gamma,1}$ $L_{\gamma,1}=L^{\mathrm{sc}}_{\gamma,1}$ all phases!

Theorem (Lieb-Thirring '76)

We have $L_{\frac{3}{2},1}=L_{\frac{3}{2},1}^{(N)}=L_{\frac{3}{2},1}^{sc}=\frac{3}{16}$, with optimizers V_N for all $N\geq 1$ (KdV solitons).

Theorem (Periodic optimizers, Frank-Gontier-ML '21)

For all 0 < k < 1, the $\ell = 2K(k)$ periodic Lamé potential $V(x) = 2k^2 \operatorname{sn}(x|k)^2 - 1 - k^2$ is also an optimizer of $L_{\frac{3}{2},1}$. Here sn and K are the Jacobi elliptic function and complete elliptic integral of the first kind, with modulus k.

Numerics in 2D

In d=2 we found periodic potentials which beat both $L_{\gamma,2}^{(1)}$ and $L_{\gamma,2}^{\rm sc}$

Important technical difficulties:

- very small difference between the lattices and the fluid
- binding energy really seems exponentially small, hard to catch
- need very high precision and the problem is nonlinear

Conclusion

$$\sum_{n=1}^{N} |\lambda_n(-\Delta+V)|^{\gamma} \leq L_{\gamma,d}^{(N)} \int_{\mathbb{R}^d} V(x)_-^{\gamma+\frac{d}{2}} dx, \qquad \gamma \begin{cases} \geq \frac{1}{2} & \text{for } d=1 \\ > 0 & \text{for } d=2 \\ \geq 0 & \text{for } d \geq 3 \end{cases}$$

► Lieb-Thirring inequality

- estimate on $N \leq \infty$ lowest eigenvalues of $-\Delta + V(x)$
- ullet is the dual of Gagliardo-Nirenberg for N=1
- ▶ Best constant $L_{\gamma,d}$
 - is sometimes equal to Gagliardo-Nirenberg (N = 1)
 - is often not given by any finite N
 - statistical mechanics problem for infinitely many fermions with nonlinear attraction

Optimal potential

- ullet probably extended over the whole space \mathbb{R}^d
- could be periodic
- is constant for $\gamma \geq 3/2$
- ullet all possibilities happen at the special point $\gamma=rac{3}{2}$ in d=1