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Gagliardo-Nirenberg-Sobolev

2<p<oo ifd=1
H'(RY) = {f € *(R?) : Vfe (R} — LP(RY) forall {2<p<oo ifd=2
2<p< 2 ifd>3

ﬁ (2;<d)p;r)2d
/ u()Pdx )™ < S / u()Pdx) / [Vu(x)|? dx
Rd Rd Rd

Optimizer unique up to translations, dilations and multiplication by a phase, given by
(radial positive) solution to nonlinear Schrédinger equation (NLS)

—AQ-Q@'4+Q=0 J

At p = 2% (Sobolev), Q(x) = (1 + |x\2)# solves —AQ = Q"' (Emden-Fowler)

NLS important in applications: Bose-Einstein condensation, nonlinear optics, water
waves, Langmuir waves in plasmas, etc

Gagliardo '59, Nirenberg '59, Sobolev '63, Strauss '77, Gidas-Ni-Nirenberg '81, Berestycki-Lions '83, Weinstein '83, Coffman '72, Kwong '89, McLeod '93
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Spectral interpretation

Introduce the dual variable V to the function |uf? € L3 (R?, R)

g d_ (py g o |7z frd-l

Vel (R R), 7+—=(7) e=y=1-24+-2"1050 ford=2
2 =2 2 T2

>0 ford>3

A1 0

—i—o—o—o—u_» o(— A+ V(x)

Lemma (GNS < spectral bound)

The lowest (negative) eigenvalue of the self-adjoint operator —A + V/(x) satisfies

- ~td
M(=A+ V)" < LE}L/ V(x)'"2 dx
d o

ot g d
with the best constant Lfyl,)d = (251(1) ’ (%) * (€M) 2 (including the case v = 0).

Proof. Variational principle A1(—A + V) = inf{/ [Vul® + V]u]* - / lu)* = 1}
Rd Rd

d(p—2)

2 2 2 2 2 GN 2 2
196l VIR = [Vl = V- gl = 190 = 1V (GMIVal)
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Lieb-Thirring inequality

N , 2% ford =1

> (A + V) gLii/ V(x)""? dx, ¥¢>0 ford=2
d

= - >0 ford>3

with the best constant Lg’\,’(), < NL(le)d, non-decreasing with N

Theorem (Lieb-Thirring '75-76)

We have Nlim Lg\g = L,.q < oo for all v as before, hence
—00 ’

~td
EM A+ V)<L, /V(x);“dx
Rd

7 not an end point by Lieb-Thirring '75-76

v =0in d > 3 by Cwikel-Lieb-Rozenblum '72-77
v=1/2in d =1 by Weidl '96

inequality is extensive, think of V = v + v(- — R)

Main application: large fermionic systems, used by Lieb-Thirring '75 to give a simplified
proof of the stability of matter (Dyson-Lenard '67)
R.L. Frank, The Lieb-Thirring inequalities: Recent results and open problems, arXiv:2007.09326 (2020)
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Lowest kinetic energy at fixed marginal
For W € L*((R?)",C) with |W|?> symmetric and ||¥||,> = 1, define the marginal

pw (x) :/ [W(x, %2, ..., xn)|* dxa - - - dx.
(Rd)N—l

Theorem (Hoffman-Ostenhof '77)

/ VVE> N / IV () dx
]RdN ]Rd

with equality if and only if W(xi, ...,xn) = € TI_, /1w (xn).

Theorem (Lieb-Thirring '76)

If W js anti-symmetric, we have

/ |W|22c§T/v1+%/ v (x) 4 dx.
RAN R4

Proof. This is the dual of LT at v = 1:

N
/RdN V|2 — N/Rd pyV o= <w, (Z —Ay, — V(x,,)> w>

n=1

N N d
>\ (Z “A, — V(x,,)> =S M(-A-V)> L4 /Rd Vo
n=1 n=1
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Scenarii for the best constant L, 4

>1 ford=1

by d
S IAn(-A+ V)T < LQNZ/ V) B dx,  y{>0 ford=2
n=1 L >0 ford>3

O L,4=L") attained for V € L7*%(R?) with N < co eigenvalues

@ L, 4 attained for V € L”+%(Rd) with infinitely many eigenvalues

v+4
loc

(RY)\ L7*% (RY) with both sides being infinite

o0
D> Pa(—A+ Vig)|?
lim "= . Ll,4
R—o00 / V(X)1+§ dx
o BR

@ L, 4 not attained in any reasonable sense

Q@ L, 4 “attained” for V € L

Known results:
13y ; _ — @
@ happens at v € {5,5}ind=1where L1 =L
Lieb-Thirring '76, Hundertmark-Lieb-Thomas '98
@ happens for all v > 2 in d > 1 with VV = —cnst (semi-classical)
Lieb-Thirring '76, Aizenman-Lieb '78, Laptev-Weidl '00
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Lieb-Thirring conjecture

For V = —u < 0, semi-classics gives
- dx d
S Pa(—A = g // (IpP — 16, (x) < 0)7 2P
n=1 (2m) :/ (‘P|2 _1) dp =1,
d - d
V()2 dx 1 | Bl R (2)
Br
296 E. H. LIEB AND W. E. THIRRING

Conjecture (Lieb-Thirring '76)

We have L, 4 = max (Lw)d7 L)

Situation now known to be more complicated

For instance, L, 4 > L5, for v <1

Helffer-Robert '90

I L1

0 12 14 16 18 20 2.2 24 26 28
Y
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. . d
Optimal potential cannot have N < oo for v > max{0,2 — 5}

>1 ford=1

d =2
ZM( A+ V)Y LEY)/ VOO dx, 4450 ford=2
Rd >0 ford>3

Theorem (Non-optimality of finite N, Frank-Gontier-ML '21)

» Let d > 1 and v > max {O 2 — g} There exists a infinite sequence Ny =1 < N, = 2
< N3 < --- such that LSde < L . In particular, L. 4 > L<N for all N € N.

» For any N = Nj, there exists an opt/ma/ potential Vi < O for L%d. Choosing the

normalization fRd |VN|7+% = 1, the corresponding eigenfns solve the NLS-type system

1
y+g -1
— A — /\ V= 1Lln uk:)\kuk., /(Z].....,N 1
( (L,N d+2ﬁ/§ju | > ) , (1)

o
1 3
1 | ? | N = oo
2 ? | N = oo
3 ? | N = oo
>4 N =o0
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Sketch of proof

Lemma 1 (existence and decay)

Lety>1/2ind=1landy>0ind > 2. If LA > L(N Y then L( ¢ admits an optimizer

Wy € Lr+5 (RY), with Ay < Any1 < 0. It is a real analytic function which decays
exponentially fast at infinity. The corresponding eigenfunctions solve the NLS system (1).

Only v > 1 in paper (use of dual inequality), general case in preparation. Uses concentration-compactness
(Lions '84), weak continuity of eigenvalues under tight convergence of potentials

Lemma 2 (binding)

Assume that v > max {0,2 — 4 }. If LE,AZ admits an optimizer then L(%I;’) > Ly

Proof of the theorem:
° L ', has the NLS optimizer @, hence LW 0 > Lw 'y by Lemma 2

° L ; has an optimizer by Lemma 1

oLd>L byLemma2

@ either L > L then take N3 = 3, or L(4d > L L(2 then take N3 = 4
o iterate
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Proof of ngl) > Lg’}ld) (Lemma 2) for N =1

—AQ-Q'+Q=0 J

For Vr(x) = —(Q(X — Rer)” + Q(x + Re1)2) g1

recall that Q(x) ~ C|x|¥e Ix]
[x|—o00

estimate the exponentially small deviation of the eigenvalues
due to nonlinear quantum tunnelling between the two wells

competition with orthonormalization of Q(- — Re1), Q(- + Re1) which generates a
2nd order error ~ e~*F

favorable for 2 + 7+§

d
— <4d=r>2-3
(—A-i—VR)
2R

v Vwae 7*2*1 v
|ua|? ~ e
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Statistical mechanics point of view

1

N d
y+9 -1
(AC<Z|An7_1Un2> ’ )Uk_AkUn k=1,.,N J
n=1

@ ~ N quantum particles bound together by their own nonlinear potential Vi

o = nonlinear Hartree model with Tsallis-type entropy tr(rﬁ), where ' = 1-PDM

@ existence for a sequence N; — oo suggests a statistical mechanics behavior, with the
particles forming a large cluster growing with N (scenario 3)

Conjecture (Frank-Gontier-ML '21)

Normalize Vi in the manner || V|| 0 gdy = 1. Then for v > max{0,2 — d/2}, Wy
converges to a periodic function (possibly constant) which is an “optimizer” of L 4.

- -
Vn
3
N & 1 2
Speculative phase diagram: — } } t = gl
Lya=L{) V' periodic Lya=L%,
onlyind <3 solid fluid
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v = % in d = 1: an integrable system related to KdV equation

L 3
2 2
& SO >
Ly, =L T Lya =L,
all phases!

Theorem (Lieb-Thirring '76)

%’Vi = L“‘%‘il = % with optimizers Viy for all N > 1 (KdV solitons).

We have L%,l =L

Theorem (Periodic optimizers, Frank-Gontier-ML '21)

For all 0 < k < 1, the £ = 2K (k) periodic Lamé potential V(x) = 2k®sn(x|k)? — 1 — k
is also an optimizer of L 31 Here sn and K are the Jacobi elliptic function and complete
elliptic integral of the first kind, with modulus k.

k=02 (L=332) k =0.7 (£ = 4.15) k = 0.995 (£ = 8.08)
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Numerics in 2D

In d = 2 we found periodic potentials which beat both L', and L%,

gamma = 1.1654
1.000010

— Llisc
— L()/Lsc, Triangular ‘ . . N
— L()Lsc, Square

— L()/Lsc, Hexagonal
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0.999995 /_\ ‘ . . '

0.999990 - - 4

0.999985

40 60 80 100
0 12 24 36 48 60 72 84 96 108

Important technical difficulties:
@ very small difference between the lattices and the fluid
@ binding energy really seems exponentially small, hard to catch

@ need very high precision and the problem is nonlinear
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Conclusion

N ” > % ford =1
ST n(=a+ V) <) / V) 2dx, 4{>0 ford=2
n=1 R

~,d
>0 ford>3

» Lieb-Thirring inequality
@ estimate on N < co lowest eigenvalues of —A 4 V/(x)
@ is the dual of Gagliardo-Nirenberg for N =1

» Best constant L, 4
@ is sometimes equal to Gagliardo-Nirenberg (N = 1)
@ is often not given by any finite N

@ statistical mechanics problem for infinitely many fermions with nonlinear attraction

» Optimal potential

@ probably extended over the whole space R?
could be periodic
is constant for v > 3/2

all possibilities happen at the special point v = % ind=1
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