New results on the Lieb-Thirring inequality

Mathieu LEWIN

(CNRS \& Paris-Dauphine University)
with Rupert L. Frank (Caltech \& Munich) and David Gontier (Paris-Dauphine)

Gagliardo-Nirenberg-Sobolev

$$
H^{1}\left(\mathbb{R}^{d}\right)=\left\{f \in L^{2}\left(\mathbb{R}^{d}\right): \nabla f \in L^{2}\left(\mathbb{R}^{d}\right)\right\} \hookrightarrow L^{p}\left(\mathbb{R}^{d}\right) \text { for all } \begin{cases}2 \leq p \leq \infty & \text { if } d=1 \\ 2 \leq p<\infty & \text { if } d=2 \\ 2 \leq p \leq \frac{2 d}{d-2} & \text { if } d \geq 3\end{cases}
$$

$$
\left(\int_{\mathbb{R}^{d}}|u(x)|^{p} d x\right)^{\frac{4}{d(p-2)}} \leq C_{p, d}^{G N S}\left(\int_{\mathbb{R}^{d}}|u(x)|^{2} d x\right)^{\frac{(2-d) p+2 d}{(p-2)}} \int_{\mathbb{R}^{d}}|\nabla u(x)|^{2} d x
$$

Optimizer unique up to translations, dilations and multiplication by a phase, given by (radial positive) solution to nonlinear Schrödinger equation (NLS)

$$
-\Delta Q-Q^{p-1}+Q=0
$$

At $p=\frac{2 d}{d-2}$ (Sobolev), $Q(x)=\left(1+|x|^{2}\right)^{\frac{2-d}{2}}$ solves $-\Delta Q=Q^{p-1}$ (Emden-Fowler)
NLS important in applications: Bose-Einstein condensation, nonlinear optics, water waves, Langmuir waves in plasmas, etc

Gagliardo '59, Nirenberg '59, Sobolev '63, Strauss '77, Gidas-Ni-Nirenberg '81, Berestycki-Lions '83, Weinstein '83, Coffman '72, Kwong '89, McLeod '93

Spectral interpretation

Introduce the dual variable V to the function $|u|^{2} \in L^{\frac{p}{2}}\left(\mathbb{R}^{d}, \mathbb{R}\right)$

$$
\begin{aligned}
V \in L^{\gamma+\frac{d}{2}}\left(\mathbb{R}^{d}, \mathbb{R}\right), \quad \gamma+\frac{d}{2}=\left(\frac{p}{2}\right)^{\prime} \Longleftrightarrow \gamma=1-\frac{d}{2}+\frac{2}{p-2} \begin{cases}\geq \frac{1}{2} & \text { for } d=1 \\
>0 & \text { for } d=2 \\
\geq 0 & \text { for } d \geq 3\end{cases} \\
\longrightarrow \sigma(-\Delta+V(x))
\end{aligned}
$$

Lemma (GNS \Leftrightarrow spectral bound)

The lowest (negative) eigenvalue of the self-adjoint operator $-\Delta+V(x)$ satisfies

$$
\left|\lambda_{1}(-\Delta+V)\right|^{\gamma} \leq L_{\gamma, d}^{(1)} \int_{\mathbb{R}^{d}} V(x)_{-}^{\gamma+\frac{d}{2}} d x
$$

with the best constant $L_{\gamma, d}^{(1)}=\left(\frac{2 \gamma}{2 \gamma+d}\right)^{\gamma+\frac{d}{2}}\left(\frac{d}{2 \gamma}\right)^{\frac{d}{2}}\left(C_{p, d}^{G N}\right)^{\frac{d}{2}} \quad$ (including the case $\gamma=0$).
Proof. Variational principle $\lambda_{1}(-\Delta+V)=\inf \left\{\int_{\mathbb{R}^{d}}|\nabla u|^{2}+V|u|^{2}: \int_{\mathbb{R}^{d}}|u|^{2}=1\right\}$
$\int_{\mathbb{R}^{d}}|\nabla u|^{2}+V|u|^{2} \geq\|\nabla u\|_{L^{2}}^{2}-\left\|V_{-}\right\|_{L^{\gamma+\frac{d}{2}}}\|u\|_{L^{p}}^{2} \geq\|\nabla u\|_{L^{2}}^{2}-\left\|V_{-}\right\|_{L^{\gamma+\frac{d}{2}}}\left(C_{p, d}^{G N}\|\nabla u\|_{L^{2}}^{2}\right)^{\frac{d(p-2)}{2 p}}$

Lieb-Thirring inequality

$$
\sum_{n=1}^{N}\left|\lambda_{n}(-\Delta+V)\right|^{\gamma} \leq L_{\gamma, d}^{(N)} \int_{\mathbb{R}^{d}} V(x)_{-}^{\gamma+\frac{d}{2}} d x, \quad \gamma \begin{cases}\geq \frac{1}{2} & \text { for } d=1 \\ >0 & \text { for } d=2 \\ \geq 0 & \text { for } d \geq 3\end{cases}
$$

with the best constant $L_{\gamma, d}^{(N)} \leq N L_{\gamma, d}^{(1)}$, non-decreasing with N

Theorem (Lieb-Thirring '75-76)

We have $\lim _{N \rightarrow \infty} L_{\gamma, d}^{(N)}=L_{\gamma, d}<\infty$ for all γ as before, hence

$$
\sum_{n=1}^{\infty}\left|\lambda_{n}(-\Delta+V)\right|^{\gamma} \leq L_{\gamma, d} \int_{\mathbb{R}^{d}} V(x)_{-}^{\gamma+\frac{d}{2}} d x
$$

- γ not an end point by Lieb-Thirring '75-76
- $\gamma=0$ in $d \geq 3$ by Cwikel-Lieb-Rozenblum '72-77
- $\gamma=1 / 2$ in $d=1$ by Weidl '96
- inequality is extensive, think of $V=v+v(\cdot-R)$

Main application: large fermionic systems, used by Lieb-Thirring '75 to give a simplified proof of the stability of matter (Dyson-Lenard '67)
R.L. Frank, The Lieb-Thirring inequalities: Recent results and open problems, arXiv:2007.09326 (2020)

Lowest kinetic energy at fixed marginal

For $\Psi \in L^{2}\left(\left(\mathbb{R}^{d}\right)^{N}, \mathbb{C}\right)$ with $|\Psi|^{2}$ symmetric and $\|\Psi\|_{L^{2}}=1$, define the marginal

$$
\mu_{\psi}(x)=\int_{\left(\mathbb{R}^{d}\right)^{N-1}}\left|\Psi\left(x, x_{2}, \ldots, x_{N}\right)\right|^{2} d x_{2} \cdots d x_{N} .
$$

Theorem (Hoffman-Ostenhof '77)

$$
\int_{\mathbb{R}^{d N}}|\nabla \Psi|^{2} \geq N \int_{\mathbb{R}^{d}}|\nabla \sqrt{\mu \psi}(x)|^{2} d x
$$

with equality if and only if $\Psi\left(x_{1}, \ldots, x_{N}\right)=e^{i \theta} \prod_{n=1}^{N} \sqrt{\mu_{\Psi}\left(x_{n}\right)}$.

Theorem (Lieb-Thirring '76)

If Ψ is anti-symmetric, we have

$$
\int_{\mathbb{R}^{d N}}|\nabla \Psi|^{2} \geq c_{d}^{L T} N^{1+\frac{2}{d}} \int_{\mathbb{R}^{d}} \mu_{\Psi}(x)^{1+\frac{2}{d}} d x
$$

Proof. This is the dual of LT at $\gamma=1$:

$$
\begin{aligned}
\int_{\mathbb{R}^{d N}}|\nabla \Psi|^{2}-N \int_{\mathbb{R}^{d}} \mu_{\Psi} V & =\left\langle\Psi,\left(\sum_{n=1}^{N}-\Delta_{x_{n}}-V\left(x_{n}\right)\right) \Psi\right\rangle \\
& \geq \lambda_{1}\left(\sum_{n=1}^{N}-\Delta_{x_{n}}-V\left(x_{n}\right)\right)=\sum_{n=1}^{N} \lambda_{n}(-\Delta-V) \geq-L_{1, d} \int_{\mathbb{R}^{d}} V_{+}^{1+\frac{d}{2}}
\end{aligned}
$$

Scenarii for the best constant $L_{\gamma, d}$

$$
\sum_{n=1}^{N}\left|\lambda_{n}(-\Delta+V)\right|^{\gamma} \leq L_{\gamma, d}^{(N)} \int_{\mathbb{R}^{d}} V(x)_{-}^{\gamma+\frac{d}{2}} d x, \quad \gamma \begin{cases}\geq \frac{1}{2} & \text { for } d=1 \\ >0 & \text { for } d=2 \\ \geq 0 & \text { for } d \geq 3\end{cases}
$$

(1) $L_{\gamma, d}=L_{\gamma, d}^{(N)}$ attained for $V \in L^{\gamma+\frac{d}{2}}\left(\mathbb{R}^{d}\right)$ with $N<\infty$ eigenvalues
(2) $L_{\gamma, d}$ attained for $V \in L^{\gamma+\frac{d}{2}}\left(\mathbb{R}^{d}\right)$ with infinitely many eigenvalues
(3) $L_{\gamma, d}$ "attained" for $V \in L_{\text {loc }}^{\gamma+\frac{d}{2}}\left(\mathbb{R}^{d}\right) \backslash L^{\gamma+\frac{d}{2}}\left(\mathbb{R}^{d}\right)$ with both sides being infinite

$$
\lim _{R \rightarrow \infty} \frac{\sum_{n=1}^{\infty}\left|\lambda_{n}\left(-\Delta+V \mathbb{1}_{B_{R}}\right)\right|^{\gamma}}{\int_{B_{R}} V(x)_{-}^{\gamma+\frac{d}{2}} d x} \stackrel{?}{=} L_{\gamma, d}
$$

(9) $L_{\gamma, d}$ not attained in any reasonable sense

Known results:

(1) happens at $\gamma \in\left\{\frac{1}{2}, \frac{3}{2}\right\}$ in $d=1$ where $L_{\gamma, 1}=L_{\gamma, 1}^{(1)}$ Lieb-Thirring '76, Hundertmark-Lieb-Thomas '98
(3) happens for all $\gamma \geq \frac{3}{2}$ in $d \geq 1$ with $V \equiv-$ cnst (semi-classical)

Lieb-Thirring conjecture

For $V \equiv-\mu<0$, semi-classics gives
$\frac{\sum_{n=1}^{\infty}\left|\lambda_{n}\left(-\Delta-\mu \mathbb{1}_{B_{R}}\right)\right|^{\gamma}}{\int_{B_{R}} V(x)_{-}^{\gamma+\frac{d}{2}} d x} \underset{R \rightarrow \infty}{\sim} \frac{\iint_{\mathbb{R}^{2 d}}\left(|p|^{2}-\mu \mathbb{1}_{B_{R}}(x) \leq 0\right)_{-}^{\gamma} \frac{d x d p}{(2 \pi)^{d}}}{\mu^{\gamma+\frac{d}{2}}\left|B_{R}\right|}=\int_{\mathbb{R}^{d}}\left(|p|^{2}-1\right)_{-}^{\gamma} \frac{d p}{(2 \pi)^{d}}=: L_{\gamma, d}^{\text {s. LIEB AND W. E. THirRING }}$

Conjecture (Lieb-Thirring '76)

We have $L_{\gamma, d}=\max \left(L_{\gamma, d}^{(1)}, L_{\gamma, d}^{\text {sc }}\right)$.
Situation now known to be more complicated
For instance, $L_{\gamma, d}>L_{\gamma, d}^{\text {sc }}$ for $\gamma<1$
Helffer-Robert '90

Optimal potential cannot have $N<\infty$ for $\gamma>\max \left\{0,2-\frac{d}{2}\right\}$

$$
\sum_{n=1}^{N}\left|\lambda_{n}(-\Delta+V)\right|^{\gamma} \leq L_{\gamma, d}^{(N)} \int_{\mathbb{R}^{d}} V(x)_{-}^{\gamma+\frac{d}{2}} d x, \quad \gamma \begin{cases}\geq \frac{1}{2} & \text { for } d=1 \\ >0 & \text { for } d=2 \\ \geq 0 & \text { for } d \geq 3\end{cases}
$$

Theorem (Non-optimality of finite N, Frank-Gontier-ML '21)

- Let $d \geq 1$ and $\gamma>\max \left\{0,2-\frac{d}{2}\right\}$. There exists a infinite sequence $N_{1}=1<N_{2}=2$
$<N_{3}<\cdots$ such that $L_{\gamma, d}^{\left(N_{j}-1\right)}<L_{\gamma, d}^{\left(N_{j}\right)}$. In particular, $L_{\gamma, d}>L_{\gamma, d}^{(N)}$ for all $N \in \mathbb{N}$.
- For any $N=N_{j}$, there exists an optimal potential $V_{N}<0$ for $L_{\gamma, d}^{(N)}$. Choosing the normalization $\int_{\mathbb{R}^{d}}\left|V_{N}\right|^{\gamma+\frac{d}{2}}=1$, the corresponding eigenfns solve the NLS-type system

$$
\begin{equation*}
(-\Delta-\underbrace{\left(\frac{2 \gamma}{L_{\gamma, d}^{(N)}(d+2 \gamma)} \sum_{n=1}^{N}\left|\lambda_{n}\right|^{\gamma-1}\left|u_{n}\right|^{2}\right)^{\frac{1}{\gamma+\frac{d}{2}-1}}}) u_{k}=\lambda_{k} u_{k}, \quad k=1, \ldots, N \tag{1}
\end{equation*}
$$

d	0	$\frac{1}{2}$	1	$\frac{3}{2}$	
1		\mid	$?$	\mid	$N=\infty$
2		$?$		\mid	$N=\infty$
3	$?$	\mid	$N=\infty$		
≥ 4		$N=\infty$			

Sketch of proof

Lemma 1 (existence and decay)

Let $\gamma>1 / 2$ in $d=1$ and $\gamma>0$ in $d \geq 2$. If $L_{\gamma, d}^{(N)}>L_{\gamma, d}^{(N-1)}$ then $L_{\gamma, d}^{(N)}$ admits an optimizer $V_{N} \in L^{\gamma+\frac{d}{2}}\left(\mathbb{R}^{d}\right)$, with $\lambda_{N}<\lambda_{N+1} \leq 0$. It is a real analytic function which decays exponentially fast at infinity. The corresponding eigenfunctions solve the NLS system (1).

Only $\gamma \geq 1$ in paper (use of dual inequality), general case in preparation. Uses concentration-compactness (Lions '84), weak continuity of eigenvalues under tight convergence of potentials

Lemma 2 (binding)

Assume that $\gamma>\max \left\{0,2-\frac{d}{2}\right\}$. If $L_{\gamma, d}^{(N)}$ admits an optimizer then $L_{\gamma, d}^{(2 N)}>L_{\gamma, d}^{(N)}$.

Proof of the theorem:

- $L_{\gamma, d}^{(1)}$ has the NLS optimizer Q, hence $L_{\gamma, d}^{(2)}>L_{\gamma, d}^{(1)}$ by Lemma 2
- $L_{\gamma, d}^{(2)}$ has an optimizer by Lemma 1
- $L_{\gamma, d}^{(4)}>L_{\gamma, d}^{(2)}$ by Lemma 2
- either $L_{\gamma, d}^{(3)}>L_{\gamma, d}^{(2)}$ then take $N_{3}=3$, or $L_{\gamma, d}^{(4)}>L_{\gamma, d}^{(3)}=L_{\gamma, d}^{(2)}$ then take $N_{3}=4$
- iterate

Proof of $L_{\gamma, d}^{(2 N)}>L_{\gamma, d}^{(N)}($ Lemma 2) for $N=1$

$$
-\Delta Q-Q^{p-1}+Q=0
$$

For $V_{R}(x)=-\left(Q\left(x-R e_{1}\right)^{2}+Q\left(x+R e_{1}\right)^{2}\right)^{\frac{1}{\gamma+\frac{d}{2}-1}}$

- recall that $Q(x) \underset{|x| \rightarrow \infty}{\sim} C|x|^{\frac{1-d}{2}} e^{-|x|}$
- estimate the exponentially small deviation of the eigenvalues
- due to nonlinear quantum tunnelling between the two wells
- competition with orthonormalization of $Q\left(\cdot-R e_{1}\right), Q\left(\cdot+R e_{1}\right)$ which generates a 2nd order error $\sim e^{-4 R}$
- favorable for $2+\frac{2}{\gamma+\frac{d}{2}-1}<4 \Longleftrightarrow \gamma>2-\frac{d}{2}$

$$
\sigma\left(-\Delta+V_{R}\right)
$$

Statistical mechanics point of view

$$
\left(-\Delta-c\left(\sum_{n=1}^{N}\left|\lambda_{n}\right|^{\gamma-1}\left|u_{n}\right|^{2}\right)^{\frac{1}{\gamma+\frac{d}{2}-1}}\right) u_{k}=\lambda_{k} u_{k}, \quad k=1, \ldots, N
$$

- $\simeq N$ quantum particles bound together by their own nonlinear potential V_{N}
- = nonlinear Hartree model with Tsallis-type entropy $\operatorname{tr}\left(\Gamma^{\frac{\gamma}{\gamma-1}}\right)$, where $\Gamma=1$-PDM
- existence for a sequence $N_{j} \rightarrow \infty$ suggests a statistical mechanics behavior, with the particles forming a large cluster growing with N (scenario 3)

Conjecture (Frank-Gontier-ML '21)

Normalize V_{N} in the manner $\left\|V_{N}\right\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}=1$. Then for $\gamma>\max \{0,2-d / 2\}, V_{N}$ converges to a periodic function (possibly constant) which is an "optimizer" of $L_{\gamma, d}$.

Speculative phase diagram:

$\gamma=\frac{3}{2}$ in $d=1$: an integrable system related to KdV equation

Theorem (Lieb-Thirring '76)

We have $L_{\frac{3}{2}, 1}=L_{\frac{3}{2}, 1}^{(N)}=L_{\frac{3}{2}, 1}^{s c}=\frac{3}{16}$, with optimizers V_{N} for all $N \geq 1$ (KdV solitons).

Theorem (Periodic optimizers, Frank-Gontier-ML '21)

For all $0<k<1$, the $\ell=2 K(k)$ periodic Lamé potential $V(x)=2 k^{2} \operatorname{sn}(x \mid k)^{2}-1-k^{2}$ is also an optimizer of $L_{\frac{3}{2}, 1}$. Here sn and K are the Jacobi elliptic function and complete elliptic integral of the first kind, with modulus k.

$$
k=0.2(\ell=3.32)
$$

$k=0.7(\ell=4.15)$

$k=0.995(\ell=8.08)$

Numerics in 2D

In $d=2$ we found periodic potentials which beat both $L_{\gamma, 2}^{(1)}$ and $L_{\gamma, 2}^{\text {sc }}$

Important technical difficulties:

- very small difference between the lattices and the fluid
- binding energy really seems exponentially small, hard to catch
- need very high precision and the problem is nonlinear

Conclusion

$$
\sum_{n=1}^{N}\left|\lambda_{n}(-\Delta+V)\right|^{\gamma} \leq L_{\gamma, d}^{(N)} \int_{\mathbb{R}^{d}} V(x)_{-}^{\gamma+\frac{d}{2}} d x, \quad \gamma \begin{cases}\geq \frac{1}{2} & \text { for } d=1 \\ >0 & \text { for } d=2 \\ \geq 0 & \text { for } d \geq 3\end{cases}
$$

- Lieb-Thirring inequality
- estimate on $N \leq \infty$ lowest eigenvalues of $-\Delta+V(x)$
- is the dual of Gagliardo-Nirenberg for $N=1$
- Best constant $L_{\gamma, d}$
- is sometimes equal to Gagliardo-Nirenberg $(N=1)$
- is often not given by any finite N
- statistical mechanics problem for infinitely many fermions with nonlinear attraction
- Optimal potential
- probably extended over the whole space \mathbb{R}^{d}
- could be periodic
- is constant for $\gamma \geq 3 / 2$
- all possibilities happen at the special point $\gamma=\frac{3}{2}$ in $d=1$

