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Summary

Summary

• Introduction: many-body Fermi gases. Extended systems with
long-range interactions (Kac scaling). Equivalent to high density regime.

• Nonlinear effective theory at high-density: Hartree-Fock theory.

• Main result: Derivation of the time-dependent Hartree equation for
extended systems at high density.

• Sketch of the proof. Control of fluctuations around limiting equation,
local semiclassical structure.

• Conclusions.
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Introduction

Many-body Fermi gases

• Consider a system of N fermionic particles, in a domain Λ ⊂ R3.
State of the system: ψN ∈ L2

a(R3N ),

ψN (x1, . . . , xN ) = sgn(π)ψN (xπ(1), . . . , xπ(N)) .

• Many-body Hamiltonian:

Htrap
N =

N∑
j=1

(−∆j + Vext(xj)) +

N∑
i<j

V (xi − xj) ,

where Vext confines the particles in Λ, and V is a bounded
two-body interaction.

• The average particle density of the system is:

% =
N

|Λ| .

For the moment, we shall suppose that the density is order 1.
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Introduction

Equilibrium and dynamical properties

• The spectral properties of Htrap
N play an important role in understanding

the behavior of the system at low temperature. Ground state energy:

EN := inf
ψN∈L2

a(R3N )

〈ψN , HNψN 〉
‖ψN‖22

.

• Quantum dynamics. Suppose that ψN equal, or close, to the ground
state of Htrap

N . Remove the trap at t = 0. Evolution:

i∂tψN,t = HNψN,t , ψN,0 = ψN .

The existence and uniqueness of the solution is provided by the spectral
theorem, ψN,t = e−iHN tψN .

• For realistic values of N , it is extremely hard to gain quantitative
information about the system. Typical questions, for large N :

Computation of EN?

Evolution of local observables?

How to describe correlations among particles?
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Introduction

Long range interactions

• Such problems are way too hard from the analytic viewpoint. The
analysis becomes more accessible in suitable scaling regimes.

• Kac scaling. Replace V (x− y) by

Vε(x− y) = ε3V (ε(x− y)) for ε� 1.

Each particle interacts with O(ε−3) particles. By the rescaling of the
coupling, ‖V ‖1 = ‖Vγ‖1.

• The simplification introduced by the scaling is that one expects a local
averaging mechanism to take place (later).

• Rmk. ε is independent of N ! Not mean-field (where ε = N−1/3). Still,
one expects that some of the predictions of mean-field are recovered.

In classical stat-mech: Lebowitz-Penrose ’66. Derivation of van der Waals
theory for the liquid/vapor transition. Lieb ’66: extension to quantum.
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Introduction

Quantum dynamics

• The Fermi velocity in a gas with density % grows as %1/3 (Lieb-Thirring).
Macroscopic time scale: τ = ε−1t with t = O(1). Schrödinger equation:

iε∂tψN,t =
( N∑
j=1

−∆j + ε3
N∑
i<j

V (ε(xi − xj))
)
ψN,t .

• Next, we rescale lengths, so that the range of the potential is 1. Let:

(UεψN )(x1, . . . , xN ) := ε−3N/2ψN (ε−1x1, . . . , ε
−1xN )

we write:

iεUε∂tψN,t = Uε

( N∑
j=1

−∆j + ε3
N∑
i<j

V (ε(xi − xj))
)
U∗εUεψN,t

=
( N∑
j=1

−ε2∆j + ε3
N∑
i<j

V (xi − xj)
)
UεψN,t ≡ HNUεψN,t .

• Rmk. The effective density is: % = N
ε3|Λ| = O(ε−3)� 1.
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Introduction

One-particle density matrix

• Consider one-particle observables ON =
∑N
j=1 1⊗(N−j) ⊗O ⊗ 1⊗(j−1).

We have:
〈ψN,t,ONψN,t〉 = trL2(R3)Oγ

(1)
N,t

where γ
(1)
N,t is the reduced one-particle density matrix. It has the kernel:

γ
(1)
N,t(x; y) = N

∫
dx2 . . . dxNψN,t(x, x2, . . . , xN )ψN,t(y, x2, . . . , xN ) .

Properties: 0 ≤ γ(1)
N,t ≤ 1, tr γ

(1)
N,t = N .

• Unfortunately, γ
(1)
N,t does not solve a closed equation: it involves γ

(2)
N,t,

whose evolution involves γ
(3)
N,t etc. (BBGKY hierarchy).

• However, in some scaling regimes one expects γ
(1)
N,t to be well

approximated by the solution of a suitable non-linear evolution equation.

• Advantage wrt to Schrödinger: the solution is an operator on L2(R3)
with trace N instead of a function on L2(R3N ).

Marcello Porta (SISSA) Fermionic dynamics June 14, 2022 6 / 25



Introduction

One-particle density matrix

• Consider one-particle observables ON =
∑N
j=1 1⊗(N−j) ⊗O ⊗ 1⊗(j−1).

We have:
〈ψN,t,ONψN,t〉 = trL2(R3)Oγ

(1)
N,t

where γ
(1)
N,t is the reduced one-particle density matrix. It has the kernel:

γ
(1)
N,t(x; y) = N

∫
dx2 . . . dxNψN,t(x, x2, . . . , xN )ψN,t(y, x2, . . . , xN ) .

Properties: 0 ≤ γ(1)
N,t ≤ 1, tr γ

(1)
N,t = N .

• Unfortunately, γ
(1)
N,t does not solve a closed equation: it involves γ

(2)
N,t,

whose evolution involves γ
(3)
N,t etc. (BBGKY hierarchy).

• However, in some scaling regimes one expects γ
(1)
N,t to be well

approximated by the solution of a suitable non-linear evolution equation.

• Advantage wrt to Schrödinger: the solution is an operator on L2(R3)
with trace N instead of a function on L2(R3N ).

Marcello Porta (SISSA) Fermionic dynamics June 14, 2022 6 / 25



Introduction

One-particle density matrix

• Consider one-particle observables ON =
∑N
j=1 1⊗(N−j) ⊗O ⊗ 1⊗(j−1).

We have:
〈ψN,t,ONψN,t〉 = trL2(R3)Oγ

(1)
N,t

where γ
(1)
N,t is the reduced one-particle density matrix. It has the kernel:

γ
(1)
N,t(x; y) = N

∫
dx2 . . . dxNψN,t(x, x2, . . . , xN )ψN,t(y, x2, . . . , xN ) .

Properties: 0 ≤ γ(1)
N,t ≤ 1, tr γ

(1)
N,t = N .

• Unfortunately, γ
(1)
N,t does not solve a closed equation: it involves γ

(2)
N,t,

whose evolution involves γ
(3)
N,t etc. (BBGKY hierarchy).

• However, in some scaling regimes one expects γ
(1)
N,t to be well

approximated by the solution of a suitable non-linear evolution equation.

• Advantage wrt to Schrödinger: the solution is an operator on L2(R3)
with trace N instead of a function on L2(R3N ).

Marcello Porta (SISSA) Fermionic dynamics June 14, 2022 6 / 25



Introduction

Slater determinants

• Recall the Schrödinger equation:

iε∂tψN,t =
( N∑
j=1

−ε2∆j + ε3
N∑
i<j

V (xi − xj)
)
ψN,t

The initial datum lives in Λ ⊂ R3, density % = O(ε−3). On uncorrelated
states, one expects a local averaging mechanism to take place:

〈
ψN,t,

N∑
i<j

V (xi − xj)ψN,t
〉
' 1

2

∫
dxdy V (x− y)ρt(x)ρt(y) ,

with ρt(x) = γN,t(x;x) = density of particles at x.

• The most uncorrelated fermionic states are Slater determinants:

ψSlater(x1, . . . , xN ) =
1√
N !

∑
π

sgn(π)f1(xπ(1)) · · · fN (xπ(N)) ,

with orthonormal fi ∈ L2(R3).
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Introduction

Hartree-Fock theory

• The HF approx. consists in replacing L2
a(R3N ) by the set of Slater dets.

• At equilibrium, the HF ground state energy of a confined system is:

EHF
N = inf

ψSlater

〈ψSlater, HNψSlater〉

= inf
ωN
EHF
N (ωN ) ,

with ωN =
∑N
i=1 |fi〉〈fi| the reduced 1PDM of a Slater, and:

EHF
N (ωN ) = tr(−ε2∆+Vext)ωN +

ε3

2

∫
dxdy V (x−y)

[
ρ(x)ρ(y)−|ωN (x; y)|2

]
(Hartree-Fock energy functional.)

• Proof of validity of the HF approximation (for the ground state energy)

Bach ’92: large atoms/molecules (analogous to mean-field)

Graf-Solovej ’94: extens. to Jellium (extended Coulomb system).
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Introduction

Time-dependent Hartree-Fock equation

• Let ψN be given by the HF minimizer, and let Vext = 0 at t = 0.

• If one assumes that ψN,t is a Slater determinant for all times, it is not
difficult to derive a self-consistent evolution equation for the 1PDM:

iε∂tωN,t =
[
− ε2∆ + ε3ρt ∗ V −Xt , ωN,t

]
with ρt(x) = ωN,t(x;x) and Xt(x; y) = ε3V (x− y)ωN,t(x; y).

(Time-dependent Hartree-Fock equation.)

• The assumption that ψN,t is a Slater determinant is of course nontrivial.

In the mean-field regime, |Λ| = O(1) and ε = N−1/3, for a suitable class
of initial data, the validity of the HF equation has been proved:

‖γ(1)
N,t − ωN,t‖HS ≤ C(t) for all times t = O(1)

which has to be compared with the trivial bounds:

‖γ(1)
N,t‖HS ≤ N1/2 , ‖ωN,t‖HS = N1/2 .
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Introduction

Rigorous results about the validity of tHF equation

We shall only discuss the mean-field/semiclassical scaling:

iε∂tψN,t =
( N∑
j=1

−ε2∆j + ε3
N∑
i<j

V (xi − xj)
)
ψN,t

with ε = N−1/3 and initial datum confined in |Λ| = O(1).

• Elgart, Erdős, Schlein, Yau ’07: analytic V , short times. BBGKY.

• Benedikter, P., Schlein ’14: V ∈ C2, all times. Fock space methods.

• Petrat, Pickl ’16: similar result, first quantization.

• Benedikter, Jaksic, P., Saffirio, Schlein ’16: ext. of [BPS] to mixed states.

• P., Rademacher, Saffirio, Schlein ’17: Coulomb, conditional result.

• Chong, Laflèche, Saffirio ’21: singular potentials, mixed states.

• Benedikter, Nam, P., Schlein, Seiringer ’22: bounded potentials, norm
approximation for a special class of pure states (bosonization).
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Introduction

Remarks

• As N →∞, the solution of the time-dependent HF equation converges to
the solution of the Vlasov equation (after Wigner transf.)

∂tWt(x, p) + 2v · ∇xWt(x, p) = ∇x(V ∗ ρVl
t ) · ∇pWt(x, p)

with ρVl(x) =
∫
dpWt(x, p). (Under suitable regularity assumptions)

• All the previous results hold for the mean-field regime, ε = N−1/3. In
particular, the coupling constant scales as N−1.

• High density regime: N/|Λ| = % and ε = O(%−1/3). In contrast to the
mean-field regime, here one has three length scales:

The size of the support of the initial datum, L ∼ |Λ|1/3
The range of the interaction potential, ` = O(1)

The interparticle distance, δ = O(%−1/3).

One has to capture the mean-field behavior at the O(1) scale.
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Main result

Interlude: the free Fermi gas

• We consider initial data that are expected to describe ground states of
confined systems. Example: the free Fermi gas (homogeneous system).

Non-interacting ground state on T3
L (3-torus of side L):

ψ = fk1 ∧ . . . ∧ fkN ,

where fk(x) = eik·x/L
3
2 and k ∈ (2π/L)Z3 (plane waves).

• The points k fill the Fermi ball:

k1

k2

Bµ

kF
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ψ = fk1 ∧ . . . ∧ fkN ,

where fk(x) = eik·x/L
3
2 and k ∈ (2π/L)Z3 (plane waves).

• The points k fill the Fermi ball.

|B(kF )| = N = L3%. The spacing between the lattice points is L−1,
hence the Fermi momentum kF grows as kF ∼ %1/3.

Up to subleading corrections in L, we can assume that the Fermi
ball is completely filled.

For interacting, homogeneous models, the free Fermi gas agrees in
energy with the HF ground state, up to corrections that are exp.
small in the density. [Gontier, Hainzl, Lewin ’18.]
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Main result

The free Fermi gas - density matrix

• Reduced one-particle density matrix:

ωN (x; y) =
1

L3

∑
k∈B(kF )

eik·(x−y) .

• Consider the operator [eip·x, ωN ]. A simple computation shows that:

|[eip·x, ωN ]| = |[eip·x, ωN ]|2 =
∑
k∈Ip

|fk〉〈fk|

with Ip = {k ∈ B(kF ) | k + p /∈ B(kF )} (see figure). Also,

|[eip·x, ωN ]|(x;x) =
1

L3
tr |[eip·x, ωN ]| = 1

L3
|Ip| = O(|p|%2/3)

BµBµ − p

kF

Ip
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Main result

Semiclassical structure

• Given Λ ⊂ R3 and ε > 0 let N = [ε−3|Λ|]. Hence, % ' ε−3.

We would like to capture the fact that ωN is concentrated in Λ and:

ωN (x; y) ' ε−3ϕ
(x− y

ε

)
ξ
(x+ y

2

)
.

• Let us define the localizer Wz and the weight XΛ(z) as:

Wz(x̂) :=
1

1 + |z − x̂|4 , XΛ(z) := 1 + dist(Λ, z)4 .

(i) We suppose that, for t ∈ [0, T ]:

XΛ(z)
∥∥Wz(t)ωN

∥∥
tr
≤ Cε−3 .

with Wz(t) = e−iε∆tWze
iε∆t (free evolution).

(ii) We shall say that ωN satisfies the local semiclassical structure if:

XΛ(z)
∥∥Wz(t)

[
eip·x, ωN

]∥∥
tr
≤ C|p|ε−2

XΛ(z)
∥∥Wz(t)

[
ε∇, ωN

]∥∥
tr
≤ Cε−2
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Main result

Derivation of the Hartree equation for extended systems

Theorem (Fresta, P., Schlein 2022)

Let V ∈ L1(R3) such that:

max
α:|α|≤8

∫
R3

dp (1 + |p|15)|∂αp V̂ (p)| <∞ .

Let ψN ∈ L2
a(R3N ), and suppose that:

‖γ(1)
N − ωN‖tr ≤ CεδN for some δ > 0,

where ωN is a rank-N orthogonal projection, and it satisfies the assumptions
(i), (ii). Let ωN,t be the solution of the time-dep. Hartree equation:

iε∂tωN,t =
[
− ε2∆ + ε3V ∗ ρt , ωN,t

]
.

Then, there exists T∗ > 0 independent of ε such that, for |t| ≤ T∗:

‖γ(1)
N,t − ωN,t‖HS ≤ C max{ε 1

2 , ε
δ
2 }N 1

2 .
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Main result

Remarks

• The result should be compared with the trivial estimates

‖γ(1)
N,t‖HS ≤ N1/2 , ‖ωN,t‖HS = N1/2 .

• The rate of convergence is independent of the size of the system:

N−1/2‖γ(1)
N,t − ωN,t‖HS ≤ C max{ε 1

2 , ε
δ
2 }

Recall that % ' ε−3. With respect to previous work [BPS14] we are able
to control the rate of convergence uniformly in the system size.

• The result actually holds for all times for which there exists C > 0 s.t.:

trWzωN,t ≤ ε−3C . [Non-concentration estimate.]

We are able to prove this bound for |t| ≤ T∗, with T∗ ≡ T∗(V ), which can
be made arb. large for V small enough.

Another challenge: propagation of the local semiclassical structure.

• Our estimates are not strong enough to resolve the exchange term.
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Sketch of the proof

Fermionic Fock space

• Fermionic Fock space:

F = C⊕
⊕
n≥1

L2
a(R3n)

F 3 ψ = (ψ(0), ψ(1), . . . , ψ(n), . . .) , Vacuum: Ω = (1, 0, 0, . . .)

• Fermonic creation/annihilation operators a(f), a∗(f) (f ∈ L2(R3)):

(a∗(f)ψ)(n)(x1, . . . , xn) =
1
√
n

n∑
j=1

(−1)jf(xj)ψ(n−1)(x1, . . . , xj−1, xj+1, . . . , xn)

(a(f)ψ)(n)(x1, . . . , xn) =
√
n+ 1

∫
dxf(x)ψ(n+1)(x, x1, . . . , xn).

Operator valued distributions: ax ≡ a(δx), a∗x ≡ a∗(δx),

a(f) =

∫
dx ax f(x) , a∗(f) =

∫
dx a∗xf(x) .

• Canonical anticommutation relations:

{a(f), a∗(g)} = 〈f, g〉L2(R3) {a(f), a(g)} = {a∗(f), a∗(g)} = 0
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Sketch of the proof

Fock space dynamics

• The Hamiltonian can be lifted to the Fock space in a natural way:

HN =

∞⊕
n=0

H
(n)
N

≡
∫
dx ε∇xa∗xε∇xax +

ε3

2

∫
dxdy V (x− y)a∗xa

∗
yayax .

That is:

e−iHN t/εψ = (ψ(0), e−iH
(1)
N t/εψ(1), . . . , e−iH

(n)
N t/εψ(n), . . .) .

• For simplicity, suppose that the initial datum is a Slater determinant:

ψ = (0, 0, . . . , 0, ψSlater, 0, . . .)

where the only nontrivial entry is the one associated to n = N .

• Slater determinants can be conveniently represented via Bogoliubov
transformations.
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Sketch of the proof

Bogoliubov transformations

• Let F 3 ψ = (0, 0, . . . , ψSlater, 0, . . .). There exists R : F → F s.t.:

1. ψ = RΩ with R∗R = 1

2. Let {fi}∞i=1 = basis of L2(R3), with {fi}Ni=1 orbitals of ψSlater. Then:

Ra(fi)R
∗ =

{
a∗(fi) for i ≤ N
a(fi) for i > N

• Equivalently, Ra(g)R∗ = a(ug) + a∗(vg), with

u ≡ uN = 1− ωN , v ≡ vN =

N∑
i=1

|fi〉〈fi| .

Important properties: uNvN = 0, vNvN = ωN .

• In general, Rt := Bogoliubov transf. corresp. to ωN,t =
∑N
i=1 |fi,t〉〈fi,t|.

The state RtΩ is the vacuum for the new operators Rta(fi)R
∗
t .
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Sketch of the proof

Estimating the distance between density matrices

• The quantity trL2(R3) γ
(1)
N,t(1− ωN,t) allows to estimate the distance

between the states. In fact:

‖γ(1)
N,t − ωN,t‖2HS = tr(γ

(1)2
N,t + ω2

N,t − ωN,tγ(1)
N,t − γ

(1)
N,tωN,t)

≤ 2 tr γ
(1)
N,t(1− ωN,t)

where we used γ
(1)
N,t ≤ 1, ωN,t ≤ 1, together with tr γ

(1)
N,t = trωN,t = N .

• On the other hand,

2 tr γ
(1)
N,t(1− ωN,t) = 〈U(t)Ω,NU(t)Ω〉

where:

N =
⊕
n≥0

n1L2(R3n) =

∞∑
i=1

a∗(fi)a(fi) [Number operator.]

U(t) = R∗t e
−iHN t/εR0 [Fluctuation dynamics.]

• Rmk. U(t) does not preserve the number of particles!
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Sketch of the proof

Growth of number of fluctuations

• 〈U(t)Ω,NU(t)Ω〉 can be controlled with a Gronwall-type inequality. The
operator N commutes with most of the terms in the generator of U(t).

With a∗(vx) =
∫
dy a∗yv(y;x) and a∗(ux) =

∫
dy a∗yu(y;x):

iε∂t
〈
U(t)Ω,NU(t)Ω

〉
= −4iε3Im

∫
dxdy V (x− y)

〈
U(t)Ω,

(
a(vt;x)a(vt;y)a(ut;y)a(ut;x)

+ a∗(ut;x)a(vt;y)a(ut;y)a(ut;x) + a∗(ut;y)a∗(vt;y)a∗(vt;x)a(vt;x)
)
U(t)Ω

〉
+ 4iε3Im

∫
dxdy V (x− y)

〈
U(t)ξ,

(
ωN,t(y;x)a∗(ut,y)a∗(vt,x)

)
U(t)Ω

〉
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Sketch of the proof

Growth of number of fluctuations

• 〈U(t)Ω,NU(t)Ω〉 can be controlled with a Gronwall type inequality. The
operator N commutes with most of the terms in the generator of U(t).

• The largest term appearing in iε∂t〈U(t)Ω,NU(t)Ω〉 is:

(∗) = ε3

∫
dxdy V (x− y)

〈
U(t)Ω, a(ux;t)a(uy;t)a(vy;t)a(vx;t)U(t)Ω

〉
It would be zero, if V was constant. We want to gain from
orthonormality in both x and y integrations.

First try:

(∗) = ε3

∫
dp V̂ (p)

〈
U(t)Ω,

(∫
dx a(ux;t)e

ipxa(vx;t)
)

·
(∫

dy a(uy;t)e
−ipya(vy;t)

)
U(t)Ω

〉
≤ ε3

∫
dp V̂ (p)

∥∥uteipxvt∥∥2

tr

where we used that
∥∥ ∫ dr1dr2A(r1, r2)ar1ar2

∥∥
op
≤ ‖A‖tr.
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Sketch of the proof

Global commutator estimates

• By orthonormality of u and v,

ε3

∫
dp V̂ (p)

∥∥uteipxvt∥∥2

tr
≤ ε3

∫
dp V̂ (p)

∥∥[ωN,t, e
ipx]
∥∥2

tr

≤ Cε3(Nε)2 ,

provided
∥∥[ωN,t, e

ipx]
∥∥

tr
≤ CNε|p| [Global s.c. structure.]

• This strategy works for the mean-field regime, where ε3 = N−1. It gives:∣∣ε∂t〈U(t)Ω,NU(t)Ω〉
∣∣ ≤ CNε2 ⇒ 〈U(t)Ω,NU(t)Ω〉 ≤ CNε � N.

• The strategy however fails for extended systems, since there ε3 = %−1

and we lose two volume factors! It would lead to the useless bound:∣∣ε∂t〈U(t)Ω,NU(t)Ω〉
∣∣ . |Λ|2ε−1 .

To improve, we need the exploit orthonormality at a smaller scale.
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Sketch of the proof

Local commutator estimate

• Using that, for n ∈ N suitably large:

V (x−y) =

∫
dp eip·(x−y) 1

1 + |p|2n (1+ |p|2n)V̂ (p) ≡
∫
dz G(x−z)F (y−z)

for two nice functions F , G localized at 0, we have:

ε3

∫
dxdy V (x− y)

〈
U(t)Ω, a(ux;t)a(uy;t)a(vy;t)a(vx;t)U(t)Ω

〉
=

ε3

∫
dz
〈
U(t)Ω,

(∫
dx a(ux;t)Fz(x)a(vx;t)

)(∫
dy a(uy;t)Gz(y)a(vy;t)

)
U(t)Ω

〉
with Fz(x) ≡ F (x− z) and Gz(y) ≡ G(y − z).

• Proceeding as before: (with XΛ(z) = 1 + dist(z,Λ)4)

(∗) ≤ ε3

∫
dz

1

XΛ(z)2

(
XΛ(z)

∥∥[ωN,t, Fz]
∥∥

tr

)(
XΛ(z)

∥∥[ωN,t, Gz]
∥∥

tr

)
and we would like to estimate each parenthesis with Cε−2.
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Sketch of the proof

Propagation of the local semiclassical structure

• By some algebra with commutators, and by the monotonicity properties
of the trace norm, it turns out that it is enough to control:

XΛ(z)
∥∥Wz[ωN,t, e

ip·x]
∥∥

tr
(∗∗)

with Wz(x) = 1
1+|x−z|4 .

To estimate this quantity in terms of the initial

datum, we ultimately need to understand UH(t; 0)∗Wz(x̂)UH(t; 0) with:

iε∂tUH(t; 0) = (−ε2∆ + ε3ρt ∗ V )UH(t; 0) .

We prove that, for x̂(t) = x̂− tiε∇, for times for which excessive
concentration does not occurr:

UH(t; 0)∗Wz(x̂)UH(t; 0) ≤ CWz(x̂(t))

which is the key ingredient to show that (**) can be controlled by:

XΛ(z)
∥∥Wz(x̂(t))[ωN , e

ip·x]
∥∥

tr
+XΛ(z)

∥∥Wz(x̂(t))[ωN , ε∇]
∥∥

tr
. ε−2.
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Sketch of the proof

Conclusions

• We discussed the derivation of the time-dependent Hartree equation for
extended systems, at high density.

• The analysis builds on previous work [BPS14] for the mean-field regime,
with the main crucial addition of exploiting a local semiclassical
structure of the initial datum.

• Much more difficult to propagate along the Hartree flow. Need to rule
out excessive concentration of particles, which we do for short times
(Long times?)

• The method allows to access the macroscopic dynamics of extended
many-body Fermi gases (for the first time, as far as I know).

• Thank you!
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