Dynamics of interacting fermions at high density

Marcello Porta
SISSA, Trieste

Joint work with Luca Fresta (Bonn) and Benjamin Schlein (Zürich) arXiv:2204.07222

Summary

- Introduction: many-body Fermi gases. Extended systems with long-range interactions (Kac scaling). Equivalent to high density regime.
- Nonlinear effective theory at high-density: Hartree-Fock theory.
- Main result: Derivation of the time-dependent Hartree equation for extended systems at high density.
- Sketch of the proof. Control of fluctuations around limiting equation, local semiclassical structure.
- Conclusions.

Introduction

Many-body Fermi gases

- Consider a system of N fermionic particles, in a domain $\Lambda \subset \mathbb{R}^{3}$. State of the system: $\psi_{N} \in L_{\mathrm{a}}^{2}\left(\mathbb{R}^{3 N}\right)$,

$$
\psi_{N}\left(x_{1}, \ldots, x_{N}\right)=\operatorname{sgn}(\pi) \psi_{N}\left(x_{\pi(1)}, \ldots, x_{\pi(N)}\right)
$$

- Many-body Hamiltonian:

$$
H_{N}^{\mathrm{trap}}=\sum_{j=1}^{N}\left(-\Delta_{j}+V_{\mathrm{ext}}\left(x_{j}\right)\right)+\sum_{i<j}^{N} V\left(x_{i}-x_{j}\right)
$$

where $V_{\text {ext }}$ confines the particles in Λ, and V is a bounded two-body interaction.

- The average particle density of the system is:

$$
\varrho=\frac{N}{|\Lambda|} .
$$

For the moment, we shall suppose that the density is order 1.

Equilibrium and dynamical properties

- The spectral properties of $H_{N}^{\text {trap }}$ play an important role in understanding the behavior of the system at low temperature. Ground state energy:

$$
E_{N}:=\inf _{\psi_{N} \in L_{2}^{2}\left(\mathbb{R}^{3 N}\right)} \frac{\left\langle\psi_{N}, H_{N} \psi_{N}\right\rangle}{\left\|\psi_{N}\right\|_{2}^{2}}
$$

- Quantum dynamics. Suppose that ψ_{N} equal, or close, to the ground state of $H_{N}^{\text {trap }}$. Remove the trap at $t=0$. Evolution:

$$
i \partial_{t} \psi_{N, t}=H_{N} \psi_{N, t}, \quad \psi_{N, 0}=\psi_{N}
$$

The existence and uniqueness of the solution is provided by the spectral theorem, $\psi_{N, t}=e^{-i H_{N} t} \psi_{N}$.

Equilibrium and dynamical properties

- The spectral properties of $H_{N}^{\text {trap }}$ play an important role in understanding the behavior of the system at low temperature. Ground state energy:

$$
E_{N}:=\inf _{\psi_{N} \in L_{2}^{2}\left(\mathbb{R}^{3 N}\right)} \frac{\left\langle\psi_{N}, H_{N} \psi_{N}\right\rangle}{\left\|\psi_{N}\right\|_{2}^{2}}
$$

- Quantum dynamics. Suppose that ψ_{N} equal, or close, to the ground state of $H_{N}^{\text {trap }}$. Remove the trap at $t=0$. Evolution:

$$
i \partial_{t} \psi_{N, t}=H_{N} \psi_{N, t}, \quad \psi_{N, 0}=\psi_{N}
$$

The existence and uniqueness of the solution is provided by the spectral theorem, $\psi_{N, t}=e^{-i H_{N} t} \psi_{N}$.

- For realistic values of N, it is extremely hard to gain quantitative information about the system. Typical questions, for large N :
- Computation of E_{N} ?
- Evolution of local observables?
- How to describe correlations among particles?

Long range interactions

- Such problems are way too hard from the analytic viewpoint. The analysis becomes more accessible in suitable scaling regimes.
- Kac scaling. Replace $V(x-y)$ by

$$
V_{\varepsilon}(x-y)=\varepsilon^{3} V(\varepsilon(x-y)) \quad \text { for } \varepsilon \ll 1 \text {. }
$$

Each particle interacts with $O\left(\varepsilon^{-3}\right)$ particles. By the rescaling of the coupling, $\|V\|_{1}=\left\|V_{\gamma}\right\|_{1}$.

- The simplification introduced by the scaling is that one expects a local averaging mechanism to take place (later).

Long range interactions

- Such problems are way too hard from the analytic viewpoint. The analysis becomes more accessible in suitable scaling regimes.
- Kac scaling. Replace $V(x-y)$ by

$$
V_{\varepsilon}(x-y)=\varepsilon^{3} V(\varepsilon(x-y)) \quad \text { for } \varepsilon \ll 1 \text {. }
$$

Each particle interacts with $O\left(\varepsilon^{-3}\right)$ particles. By the rescaling of the coupling, $\|V\|_{1}=\left\|V_{\gamma}\right\|_{1}$.

- The simplification introduced by the scaling is that one expects a local averaging mechanism to take place (later).
- Rmk. ε is independent of N ! Not mean-field (where $\varepsilon=N^{-1 / 3}$). Still, one expects that some of the predictions of mean-field are recovered. In classical stat-mech: Lebowitz-Penrose '66. Derivation of van der Waals theory for the liquid/vapor transition. Lieb '66: extension to quantum.

Quantum dynamics

- The Fermi velocity in a gas with density ϱ grows as $\varrho^{1 / 3}$ (Lieb-Thirring). Macroscopic time scale: $\tau=\varepsilon^{-1} t$ with $t=O(1)$. Schrödinger equation:

$$
i \varepsilon \partial_{t} \psi_{N, t}=\left(\sum_{j=1}^{N}-\Delta_{j}+\varepsilon^{3} \sum_{i<j}^{N} V\left(\varepsilon\left(x_{i}-x_{j}\right)\right)\right) \psi_{N, t} .
$$

Quantum dynamics

- The Fermi velocity in a gas with density ϱ grows as $\varrho^{1 / 3}$ (Lieb-Thirring). Macroscopic time scale: $\tau=\varepsilon^{-1} t$ with $t=O(1)$. Schrödinger equation:

$$
i \varepsilon \partial_{t} \psi_{N, t}=\left(\sum_{j=1}^{N}-\Delta_{j}+\varepsilon^{3} \sum_{i<j}^{N} V\left(\varepsilon\left(x_{i}-x_{j}\right)\right)\right) \psi_{N, t} .
$$

- Next, we rescale lengths, so that the range of the potential is 1 . Let:

$$
\left(U_{\varepsilon} \psi_{N}\right)\left(x_{1}, \ldots, x_{N}\right):=\varepsilon^{-3 N / 2} \psi_{N}\left(\varepsilon^{-1} x_{1}, \ldots, \varepsilon^{-1} x_{N}\right)
$$

we write:

$$
\begin{aligned}
i \varepsilon U_{\varepsilon} \partial_{t} \psi_{N, t} & =U_{\varepsilon}\left(\sum_{j=1}^{N}-\Delta_{j}+\varepsilon^{3} \sum_{i<j}^{N} V\left(\varepsilon\left(x_{i}-x_{j}\right)\right)\right) U_{\varepsilon}^{*} U_{\varepsilon} \psi_{N, t} \\
& =\left(\sum_{j=1}^{N}-\varepsilon^{2} \Delta_{j}+\varepsilon^{3} \sum_{i<j}^{N} V\left(x_{i}-x_{j}\right)\right) U_{\varepsilon} \psi_{N, t} \equiv H_{N} U_{\varepsilon} \psi_{N, t}
\end{aligned}
$$

Quantum dynamics

- The Fermi velocity in a gas with density ϱ grows as $\varrho^{1 / 3}$ (Lieb-Thirring). Macroscopic time scale: $\tau=\varepsilon^{-1} t$ with $t=O(1)$. Schrödinger equation:

$$
i \varepsilon \partial_{t} \psi_{N, t}=\left(\sum_{j=1}^{N}-\Delta_{j}+\varepsilon^{3} \sum_{i<j}^{N} V\left(\varepsilon\left(x_{i}-x_{j}\right)\right)\right) \psi_{N, t} .
$$

- Next, we rescale lengths, so that the range of the potential is 1 . Let:

$$
\left(U_{\varepsilon} \psi_{N}\right)\left(x_{1}, \ldots, x_{N}\right):=\varepsilon^{-3 N / 2} \psi_{N}\left(\varepsilon^{-1} x_{1}, \ldots, \varepsilon^{-1} x_{N}\right)
$$

we write:

$$
\begin{aligned}
i \varepsilon U_{\varepsilon} \partial_{t} \psi_{N, t} & =U_{\varepsilon}\left(\sum_{j=1}^{N}-\Delta_{j}+\varepsilon^{3} \sum_{i<j}^{N} V\left(\varepsilon\left(x_{i}-x_{j}\right)\right)\right) U_{\varepsilon}^{*} U_{\varepsilon} \psi_{N, t} \\
& =\left(\sum_{j=1}^{N}-\varepsilon^{2} \Delta_{j}+\varepsilon^{3} \sum_{i<j}^{N} V\left(x_{i}-x_{j}\right)\right) U_{\varepsilon} \psi_{N, t} \equiv H_{N} U_{\varepsilon} \psi_{N, t}
\end{aligned}
$$

- Rmk. The effective density is: $\varrho=\frac{N}{\varepsilon^{3}|\Lambda|}=O\left(\varepsilon^{-3}\right) \gg 1$.

One-particle density matrix

- Consider one-particle observables $\mathcal{O}_{N}=\sum_{j=1}^{N} 1^{\otimes(N-j)} \otimes O \otimes 1^{\otimes(j-1)}$. We have:

$$
\left\langle\psi_{N, t}, \mathcal{O}_{N} \psi_{N, t}\right\rangle=\operatorname{tr}_{L^{2}\left(\mathbb{R}^{3}\right)} O \gamma_{N, t}^{(1)}
$$

where $\gamma_{N, t}^{(1)}$ is the reduced one-particle density matrix. It has the kernel:

$$
\gamma_{N, t}^{(1)}(x ; y)=N \int d x_{2} \ldots d x_{N} \psi_{N, t}\left(x, x_{2}, \ldots, x_{N}\right) \overline{\psi_{N, t}\left(y, x_{2}, \ldots, x_{N}\right)} .
$$

Properties: $\quad 0 \leq \gamma_{N, t}^{(1)} \leq 1, \quad \operatorname{tr} \gamma_{N, t}^{(1)}=N$.

One-particle density matrix

- Consider one-particle observables $\mathcal{O}_{N}=\sum_{j=1}^{N} 1^{\otimes(N-j)} \otimes O \otimes 1^{\otimes(j-1)}$. We have:

$$
\left\langle\psi_{N, t}, \mathcal{O}_{N} \psi_{N, t}\right\rangle=\operatorname{tr}_{L^{2}\left(\mathbb{R}^{3}\right)} O \gamma_{N, t}^{(1)}
$$

where $\gamma_{N, t}^{(1)}$ is the reduced one-particle density matrix. It has the kernel:

$$
\gamma_{N, t}^{(1)}(x ; y)=N \int d x_{2} \ldots d x_{N} \psi_{N, t}\left(x, x_{2}, \ldots, x_{N}\right) \overline{\psi_{N, t}\left(y, x_{2}, \ldots, x_{N}\right)} .
$$

Properties: $\quad 0 \leq \gamma_{N, t}^{(1)} \leq 1, \quad \operatorname{tr} \gamma_{N, t}^{(1)}=N$.

- Unfortunately, $\gamma_{N, t}^{(1)}$ does not solve a closed equation: it involves $\gamma_{N, t}^{(2)}$, whose evolution involves $\gamma_{N, t}^{(3)}$ etc. (BBGKY hierarchy).
- However, in some scaling regimes one expects $\gamma_{N, t}^{(1)}$ to be well approximated by the solution of a suitable non-linear evolution equation.

One-particle density matrix

- Consider one-particle observables $\mathcal{O}_{N}=\sum_{j=1}^{N} 1^{\otimes(N-j)} \otimes O \otimes 1^{\otimes(j-1)}$. We have:

$$
\left\langle\psi_{N, t}, \mathcal{O}_{N} \psi_{N, t}\right\rangle=\operatorname{tr}_{L^{2}\left(\mathbb{R}^{3}\right)} O \gamma_{N, t}^{(1)}
$$

where $\gamma_{N, t}^{(1)}$ is the reduced one-particle density matrix. It has the kernel:

$$
\gamma_{N, t}^{(1)}(x ; y)=N \int d x_{2} \ldots d x_{N} \psi_{N, t}\left(x, x_{2}, \ldots, x_{N}\right) \overline{\psi_{N, t}\left(y, x_{2}, \ldots, x_{N}\right)} .
$$

Properties: $\quad 0 \leq \gamma_{N, t}^{(1)} \leq 1, \quad \operatorname{tr} \gamma_{N, t}^{(1)}=N$.

- Unfortunately, $\gamma_{N, t}^{(1)}$ does not solve a closed equation: it involves $\gamma_{N, t}^{(2)}$, whose evolution involves $\gamma_{N, t}^{(3)}$ etc. (BBGKY hierarchy).
- However, in some scaling regimes one expects $\gamma_{N, t}^{(1)}$ to be well approximated by the solution of a suitable non-linear evolution equation.
- Advantage wrt to Schrödinger: the solution is an operator on $L^{2}\left(\mathbb{R}^{3}\right)$ with trace N instead of a function on $L^{2}\left(\mathbb{R}^{3 N}\right)$.

Slater determinants

- Recall the Schrödinger equation:

$$
i \varepsilon \partial_{t} \psi_{N, t}=\left(\sum_{j=1}^{N}-\varepsilon^{2} \Delta_{j}+\varepsilon^{3} \sum_{i<j}^{N} V\left(x_{i}-x_{j}\right)\right) \psi_{N, t}
$$

The initial datum lives in $\Lambda \subset \mathbb{R}^{3}$, density $\varrho=O\left(\varepsilon^{-3}\right)$. On uncorrelated states, one expects a local averaging mechanism to take place:

$$
\left\langle\psi_{N, t}, \sum_{i<j}^{N} V\left(x_{i}-x_{j}\right) \psi_{N, t}\right\rangle \simeq \frac{1}{2} \int d x d y V(x-y) \rho_{t}(x) \rho_{t}(y),
$$

with $\rho_{t}(x)=\gamma_{N, t}(x ; x)=$ density of particles at x.

Slater determinants

- Recall the Schrödinger equation:

$$
i \varepsilon \partial_{t} \psi_{N, t}=\left(\sum_{j=1}^{N}-\varepsilon^{2} \Delta_{j}+\varepsilon^{3} \sum_{i<j}^{N} V\left(x_{i}-x_{j}\right)\right) \psi_{N, t}
$$

The initial datum lives in $\Lambda \subset \mathbb{R}^{3}$, density $\varrho=O\left(\varepsilon^{-3}\right)$. On uncorrelated states, one expects a local averaging mechanism to take place:

$$
\left\langle\psi_{N, t}, \sum_{i<j}^{N} V\left(x_{i}-x_{j}\right) \psi_{N, t}\right\rangle \simeq \frac{1}{2} \int d x d y V(x-y) \rho_{t}(x) \rho_{t}(y),
$$

with $\rho_{t}(x)=\gamma_{N, t}(x ; x)=$ density of particles at x.

- The most uncorrelated fermionic states are Slater determinants:

$$
\psi_{\text {Slater }}\left(x_{1}, \ldots, x_{N}\right)=\frac{1}{\sqrt{N!}} \sum_{\pi} \operatorname{sgn}(\pi) f_{1}\left(x_{\pi(1)}\right) \cdots f_{N}\left(x_{\pi(N)}\right)
$$

with orthonormal $f_{i} \in L^{2}\left(\mathbb{R}^{3}\right)$.

Hartree-Fock theory

- The HF approx. consists in replacing $L_{\mathrm{a}}^{2}\left(\mathbb{R}^{3 N}\right)$ by the set of Slater dets.
- At equilibrium, the HF ground state energy of a confined system is:

$$
\begin{aligned}
E_{N}^{\mathrm{HF}} & =\inf _{\psi_{\text {Slater }}}\left\langle\psi_{\text {Slater }}, H_{N} \psi_{\text {Slater }}\right\rangle \\
& =\inf _{\omega_{N}} \mathcal{E}_{N}^{\mathrm{HF}}\left(\omega_{N}\right),
\end{aligned}
$$

with $\omega_{N}=\sum_{i=1}^{N}\left|f_{i}\right\rangle\left\langle f_{i}\right|$ the reduced 1PDM of a Slater, and:
$\mathcal{E}_{N}^{\mathrm{HF}}\left(\omega_{N}\right)=\operatorname{tr}\left(-\varepsilon^{2} \Delta+V_{\mathrm{ext}}\right) \omega_{N}+\frac{\varepsilon^{3}}{2} \int d x d y V(x-y)\left[\rho(x) \rho(y)-\left|\omega_{N}(x ; y)\right|^{2}\right]$
(Hartree-Fock energy functional.)

Hartree-Fock theory

- The HF approx. consists in replacing $L_{\mathrm{a}}^{2}\left(\mathbb{R}^{3 N}\right)$ by the set of Slater dets.
- At equilibrium, the HF ground state energy of a confined system is:

$$
\begin{aligned}
E_{N}^{\mathrm{HF}} & =\inf _{\psi_{\text {Slater }}}\left\langle\psi_{\text {Slater }}, H_{N} \psi_{\text {Slater }}\right\rangle \\
& =\inf _{\omega_{N}} \mathcal{E}_{N}^{\mathrm{HF}}\left(\omega_{N}\right),
\end{aligned}
$$

with $\omega_{N}=\sum_{i=1}^{N}\left|f_{i}\right\rangle\left\langle f_{i}\right|$ the reduced 1PDM of a Slater, and:
$\mathcal{E}_{N}^{\mathrm{HF}}\left(\omega_{N}\right)=\operatorname{tr}\left(-\varepsilon^{2} \Delta+V_{\mathrm{ext}}\right) \omega_{N}+\frac{\varepsilon^{3}}{2} \int d x d y V(x-y)\left[\rho(x) \rho(y)-\left|\omega_{N}(x ; y)\right|^{2}\right]$
(Hartree-Fock energy functional.)

- Proof of validity of the HF approximation (for the ground state energy)
- Bach '92: large atoms/molecules (analogous to mean-field)
- Graf-Solovej '94: extens. to Jellium (extended Coulomb system).

Time-dependent Hartree-Fock equation

- Let ψ_{N} be given by the HF minimizer, and let $V_{\text {ext }}=0$ at $t=0$.
- If one assumes that $\psi_{N, t}$ is a Slater determinant for all times, it is not difficult to derive a self-consistent evolution equation for the 1PDM:

$$
i \varepsilon \partial_{t} \omega_{N, t}=\left[-\varepsilon^{2} \Delta+\varepsilon^{3} \rho_{t} * V-X_{t}, \omega_{N, t}\right]
$$

with $\rho_{t}(x)=\omega_{N, t}(x ; x)$ and $X_{t}(x ; y)=\varepsilon^{3} V(x-y) \omega_{N, t}(x ; y)$.
(Time-dependent Hartree-Fock equation.)

Time-dependent Hartree-Fock equation

- Let ψ_{N} be given by the HF minimizer, and let $V_{\text {ext }}=0$ at $t=0$.
- If one assumes that $\psi_{N, t}$ is a Slater determinant for all times, it is not difficult to derive a self-consistent evolution equation for the 1PDM:

$$
i \varepsilon \partial_{t} \omega_{N, t}=\left[-\varepsilon^{2} \Delta+\varepsilon^{3} \rho_{t} * V-X_{t}, \omega_{N, t}\right]
$$

with $\rho_{t}(x)=\omega_{N, t}(x ; x)$ and $X_{t}(x ; y)=\varepsilon^{3} V(x-y) \omega_{N, t}(x ; y)$.
(Time-dependent Hartree-Fock equation.)

- The assumption that $\psi_{N, t}$ is a Slater determinant is of course nontrivial. In the mean-field regime, $|\Lambda|=O(1)$ and $\varepsilon=N^{-1 / 3}$, for a suitable class of initial data, the validity of the HF equation has been proved:

$$
\left\|\gamma_{N, t}^{(1)}-\omega_{N, t}\right\|_{\mathrm{HS}} \leq C(t) \quad \text { for all times } t=O(1)
$$

which has to be compared with the trivial bounds:

$$
\left\|\gamma_{N, t}^{(1)}\right\|_{\mathrm{HS}} \leq N^{1 / 2}, \quad\left\|\omega_{N, t}\right\|_{\mathrm{HS}}=N^{1 / 2}
$$

Rigorous results about the validity of tHF equation

We shall only discuss the mean-field/semiclassical scaling:

$$
i \varepsilon \partial_{t} \psi_{N, t}=\left(\sum_{j=1}^{N}-\varepsilon^{2} \Delta_{j}+\varepsilon^{3} \sum_{i<j}^{N} V\left(x_{i}-x_{j}\right)\right) \psi_{N, t}
$$

with $\varepsilon=N^{-1 / 3}$ and initial datum confined in $|\Lambda|=O(1)$.

- Elgart, Erdős, Schlein, Yau '07: analytic V, short times. BBGKY.
- Benedikter, P., Schlein '14: $V \in C^{2}$, all times. Fock space methods.
- Petrat, Pickl '16: similar result, first quantization.
- Benedikter, Jaksic, P., Saffirio, Schlein '16: ext. of [BPS] to mixed states.
- P., Rademacher, Saffirio, Schlein '17: Coulomb, conditional result.
- Chong, Laflèche, Saffirio '21: singular potentials, mixed states.
- Benedikter, Nam, P., Schlein, Seiringer '22: bounded potentials, norm approximation for a special class of pure states (bosonization).

Remarks

- As $N \rightarrow \infty$, the solution of the time-dependent HF equation converges to the solution of the Vlasov equation (after Wigner transf.)

$$
\partial_{t} W_{t}(x, p)+2 v \cdot \nabla_{x} W_{t}(x, p)=\nabla_{x}\left(V * \rho_{t}^{\mathrm{Vl}}\right) \cdot \nabla_{p} W_{t}(x, p)
$$

with $\rho^{\mathrm{Vl}}(x)=\int d p W_{t}(x, p)$. (Under suitable regularity assumptions)

Remarks

- As $N \rightarrow \infty$, the solution of the time-dependent HF equation converges to the solution of the Vlasov equation (after Wigner transf.)

$$
\partial_{t} W_{t}(x, p)+2 v \cdot \nabla_{x} W_{t}(x, p)=\nabla_{x}\left(V * \rho_{t}^{\mathrm{Vl}}\right) \cdot \nabla_{p} W_{t}(x, p)
$$

with $\rho^{\mathrm{Vl}}(x)=\int d p W_{t}(x, p)$. (Under suitable regularity assumptions)

- All the previous results hold for the mean-field regime, $\varepsilon=N^{-1 / 3}$. In particular, the coupling constant scales as N^{-1}.
- High density regime: $N /|\Lambda|=\varrho$ and $\varepsilon=O\left(\varrho^{-1 / 3}\right)$. In contrast to the mean-field regime, here one has three length scales:
- The size of the support of the initial datum, $L \sim|\Lambda|^{1 / 3}$
- The range of the interaction potential, $\ell=O(1)$
- The interparticle distance, $\delta=O\left(\varrho^{-1 / 3}\right)$.

One has to capture the mean-field behavior at the $O(1)$ scale.

Main result

Interlude: the free Fermi gas

- We consider initial data that are expected to describe ground states of confined systems. Example: the free Fermi gas (homogeneous system). Non-interacting ground state on \mathbb{T}_{L}^{3} (3-torus of side L):

$$
\psi=f_{k_{1}} \wedge \ldots \wedge f_{k_{N}}
$$

where $f_{k}(x)=e^{i k \cdot x} / L^{\frac{3}{2}}$ and $k \in(2 \pi / L) \mathbb{Z}^{3} \quad$ (plane waves).

- The points k fill the Fermi ball:

Interlude: the free Fermi gas

- We consider initial data that are expected to describe ground states of confined systems. Example: the free Fermi gas (homogeneous system). Non-interacting ground state on \mathbb{T}_{L}^{3} (3-torus of side L):

$$
\psi=f_{k_{1}} \wedge \ldots \wedge f_{k_{N}}
$$

where $f_{k}(x)=e^{i k \cdot x} / L^{\frac{3}{2}}$ and $k \in(2 \pi / L) \mathbb{Z}^{3} \quad$ (plane waves).

- The points k fill the Fermi ball.
- $\left|\mathcal{B}\left(k_{F}\right)\right|=N=L^{3} \varrho$. The spacing between the lattice points is L^{-1}, hence the Fermi momentum k_{F} grows as $k_{F} \sim \varrho^{1 / 3}$.
- Up to subleading corrections in L, we can assume that the Fermi ball is completely filled.
- For interacting, homogeneous models, the free Fermi gas agrees in energy with the HF ground state, up to corrections that are exp. small in the density. [Gontier, Hainzl, Lewin '18.]

The free Fermi gas - density matrix

- Reduced one-particle density matrix:

$$
\omega_{N}(x ; y)=\frac{1}{L^{3}} \sum_{k \in \mathcal{B}\left(k_{F}\right)} e^{i k \cdot(x-y)} .
$$

- Consider the operator $\left[e^{i p \cdot x}, \omega_{N}\right]$. A simple computation shows that:

$$
\left|\left[e^{i p \cdot x}, \omega_{N}\right]\right|=\left|\left[e^{i p \cdot x}, \omega_{N}\right]\right|^{2}=\sum_{k \in I_{p}}\left|f_{k}\right\rangle\left\langle f_{k}\right|
$$

with $I_{p}=\left\{k \in \mathcal{B}\left(k_{F}\right) \mid k+p \notin \mathcal{B}\left(k_{F}\right)\right\}$ (see figure). Also,

$$
\left|\left[e^{i p \cdot x}, \omega_{N}\right]\right|(x ; x)=\frac{1}{L^{3}} \operatorname{tr}\left|\left[e^{i p \cdot x}, \omega_{N}\right]\right|=\frac{1}{L^{3}}\left|I_{p}\right|=O\left(|p| \varrho^{2 / 3}\right)
$$

Semiclassical structure

- Given $\Lambda \subset \mathbb{R}^{3}$ and $\varepsilon>0$ let $N=\left[\varepsilon^{-3}|\Lambda|\right]$. Hence, $\varrho \simeq \varepsilon^{-3}$. We would like to capture the fact that ω_{N} is concentrated in Λ and:

$$
\omega_{N}(x ; y) \simeq \varepsilon^{-3} \varphi\left(\frac{x-y}{\varepsilon}\right) \xi\left(\frac{x+y}{2}\right)
$$

Semiclassical structure

- Given $\Lambda \subset \mathbb{R}^{3}$ and $\varepsilon>0$ let $N=\left[\varepsilon^{-3}|\Lambda|\right]$. Hence, $\varrho \simeq \varepsilon^{-3}$.

We would like to capture the fact that ω_{N} is concentrated in Λ and:

$$
\omega_{N}(x ; y) \simeq \varepsilon^{-3} \varphi\left(\frac{x-y}{\varepsilon}\right) \xi\left(\frac{x+y}{2}\right) .
$$

- Let us define the localizer \mathcal{W}_{z} and the weight $X_{\Lambda}(z)$ as:

$$
\mathcal{W}_{z}(\hat{x}):=\frac{1}{1+|z-\hat{x}|^{4}}, \quad X_{\Lambda}(z):=1+\operatorname{dist}(\Lambda, z)^{4}
$$

(i) We suppose that, for $t \in[0, T]$:

$$
X_{\Lambda}(z)\left\|\mathcal{W}_{z}(t) \omega_{N}\right\|_{\operatorname{tr}} \leq C \varepsilon^{-3} .
$$

with $\mathcal{W}_{z}(t)=e^{-i \varepsilon \Delta t} \mathcal{W}_{z} e^{i \varepsilon \Delta t} \quad$ (free evolution).
(ii) We shall say that ω_{N} satisfies the local semiclassical structure if:

$$
\begin{gathered}
X_{\Lambda}(z)\left\|\mathcal{W}_{z}(t)\left[e^{i p \cdot x}, \omega_{N}\right]\right\|_{\mathrm{tr}} \leq C|p| \varepsilon^{-2} \\
X_{\Lambda}(z)\left\|\mathcal{W}_{z}(t)\left[\varepsilon \nabla, \omega_{N}\right]\right\|_{\mathrm{tr}} \leq C \varepsilon^{-2}
\end{gathered}
$$

Derivation of the Hartree equation for extended systems

Theorem (Fresta, P., Schlein 2022)

Let $V \in L^{1}\left(\mathbb{R}^{3}\right)$ such that:

$$
\max _{\alpha:|\alpha| \leq 8} \int_{\mathbb{R}^{3}} d p\left(1+|p|^{15}\right)\left|\partial_{p}^{\alpha} \hat{V}(p)\right|<\infty
$$

Let $\psi_{N} \in L_{a}^{2}\left(\mathbb{R}^{3 N}\right)$, and suppose that:

$$
\left\|\gamma_{N}^{(1)}-\omega_{N}\right\|_{t r} \leq C \varepsilon^{\delta} N \quad \text { for some } \delta>0
$$

where ω_{N} is a rank- N orthogonal projection, and it satisfies the assumptions (i), (ii). Let $\omega_{N, t}$ be the solution of the time-dep. Hartree equation:

$$
i \varepsilon \partial_{t} \omega_{N, t}=\left[-\varepsilon^{2} \Delta+\varepsilon^{3} V * \rho_{t}, \omega_{N, t}\right]
$$

Then, there exists $T_{*}>0$ independent of ε such that, for $|t| \leq T_{*}$:

$$
\left\|\gamma_{N, t}^{(1)}-\omega_{N, t}\right\|_{H S} \leq C \max \left\{\varepsilon^{\frac{1}{2}}, \varepsilon^{\frac{\delta}{2}}\right\} N^{\frac{1}{2}}
$$

Remarks

- The result should be compared with the trivial estimates

$$
\left\|\gamma_{N, t}^{(1)}\right\|_{\mathrm{HS}} \leq N^{1 / 2}, \quad\left\|\omega_{N, t}\right\|_{\mathrm{HS}}=N^{1 / 2} .
$$

Remarks

- The result should be compared with the trivial estimates

$$
\left\|\gamma_{N, t}^{(1)}\right\|_{\mathrm{HS}} \leq N^{1 / 2}, \quad\left\|\omega_{N, t}\right\|_{\mathrm{HS}}=N^{1 / 2} .
$$

- The rate of convergence is independent of the size of the system:

$$
N^{-1 / 2}\left\|\gamma_{N, t}^{(1)}-\omega_{N, t}\right\|_{\mathrm{HS}} \leq C \max \left\{\varepsilon^{\frac{1}{2}}, \varepsilon^{\frac{\delta}{2}}\right\}
$$

Recall that $\varrho \simeq \varepsilon^{-3}$. With respect to previous work [BPS14] we are able to control the rate of convergence uniformly in the system size.

Remarks

- The result should be compared with the trivial estimates

$$
\left\|\gamma_{N, t}^{(1)}\right\|_{\mathrm{HS}} \leq N^{1 / 2}, \quad\left\|\omega_{N, t}\right\|_{\mathrm{HS}}=N^{1 / 2} .
$$

- The rate of convergence is independent of the size of the system:

$$
N^{-1 / 2}\left\|\gamma_{N, t}^{(1)}-\omega_{N, t}\right\|_{\mathrm{HS}} \leq C \max \left\{\varepsilon^{\frac{1}{2}}, \varepsilon^{\frac{\delta}{2}}\right\}
$$

Recall that $\varrho \simeq \varepsilon^{-3}$. With respect to previous work [BPS14] we are able to control the rate of convergence uniformly in the system size.

- The result actually holds for all times for which there exists $C>0$ s.t.:

$$
\operatorname{tr} \mathcal{W}_{z} \omega_{N, t} \leq \varepsilon^{-3} C . \quad[\text { Non-concentration estimate.] }
$$

We are able to prove this bound for $|t| \leq T_{*}$, with $T_{*} \equiv T_{*}(V)$, which can be made arb. large for V small enough.
Another challenge: propagation of the local semiclassical structure.

Remarks

- The result should be compared with the trivial estimates

$$
\left\|\gamma_{N, t}^{(1)}\right\|_{\mathrm{HS}} \leq N^{1 / 2}, \quad\left\|\omega_{N, t}\right\|_{\mathrm{HS}}=N^{1 / 2} .
$$

- The rate of convergence is independent of the size of the system:

$$
N^{-1 / 2}\left\|\gamma_{N, t}^{(1)}-\omega_{N, t}\right\|_{\mathrm{HS}} \leq C \max \left\{\varepsilon^{\frac{1}{2}}, \varepsilon^{\frac{\delta}{2}}\right\}
$$

Recall that $\varrho \simeq \varepsilon^{-3}$. With respect to previous work [BPS14] we are able to control the rate of convergence uniformly in the system size.

- The result actually holds for all times for which there exists $C>0$ s.t.:

$$
\operatorname{tr} \mathcal{W}_{z} \omega_{N, t} \leq \varepsilon^{-3} C . \quad[\text { Non-concentration estimate.] }
$$

We are able to prove this bound for $|t| \leq T_{*}$, with $T_{*} \equiv T_{*}(V)$, which can be made arb. large for V small enough.
Another challenge: propagation of the local semiclassical structure.

- Our estimates are not strong enough to resolve the exchange term.

Sketch of the proof

Fermionic Fock space

- Fermionic Fock space:

$$
\begin{aligned}
\mathcal{F} & =\mathbb{C} \oplus \bigoplus_{n \geq 1} L_{\mathrm{a}}^{2}\left(\mathbb{R}^{3 n}\right) \\
\mathcal{F} \ni \psi & =\left(\psi^{(0)}, \psi^{(1)}, \ldots, \psi^{(n)}, \ldots\right), \quad \text { Vacuum: } \Omega=(1,0,0, \ldots)
\end{aligned}
$$

- Fermonic creation/annihilation operators $a(f), a^{*}(f)\left(f \in L^{2}\left(\mathbb{R}^{3}\right)\right)$:

$$
\begin{aligned}
\left(a^{*}(f) \psi\right)^{(n)}\left(x_{1}, \ldots, x_{n}\right) & =\frac{1}{\sqrt{n}} \sum_{j=1}^{n}(-1)^{j} f\left(x_{j}\right) \psi^{(n-1)}\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}\right) \\
(a(f) \psi)^{(n)}\left(x_{1}, \ldots, x_{n}\right) & =\sqrt{n+1} \int d x \bar{f}(x) \psi^{(n+1)}\left(x, x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Operator valued distributions: $a_{x} \equiv a\left(\delta_{x}\right), a_{x}^{*} \equiv a^{*}\left(\delta_{x}\right)$,

$$
a(f)=\int d x a_{x} \overline{f(x)}, \quad a^{*}(f)=\int d x a_{x}^{*} f(x)
$$

- Canonical anticommutation relations:

$$
\left\{a(f), a^{*}(g)\right\}=\langle f, g\rangle_{L^{2}\left(\mathbb{R}^{3}\right)} \quad\{a(f), a(g)\}=\left\{a^{*}(f), a^{*}(g)\right\}=0
$$

Fock space dynamics

- The Hamiltonian can be lifted to the Fock space in a natural way:

$$
\begin{aligned}
\mathcal{H}_{N} & =\bigoplus_{n=0}^{\infty} H_{N}^{(n)} \\
& \equiv \int d x \varepsilon \nabla_{x} a_{x}^{*} \varepsilon \nabla_{x} a_{x}+\frac{\varepsilon^{3}}{2} \int d x d y V(x-y) a_{x}^{*} a_{y}^{*} a_{y} a_{x} .
\end{aligned}
$$

That is:

$$
e^{-i \mathcal{H}_{N} t / \varepsilon} \psi=\left(\psi^{(0)}, e^{-i H_{N}^{(1)} t / \varepsilon} \psi^{(1)}, \ldots, e^{-i H_{N}^{(n)} t / \varepsilon} \psi^{(n)}, \ldots\right) .
$$

Fock space dynamics

- The Hamiltonian can be lifted to the Fock space in a natural way:

$$
\begin{aligned}
\mathcal{H}_{N} & =\bigoplus_{n=0}^{\infty} H_{N}^{(n)} \\
& \equiv \int d x \varepsilon \nabla_{x} a_{x}^{*} \varepsilon \nabla_{x} a_{x}+\frac{\varepsilon^{3}}{2} \int d x d y V(x-y) a_{x}^{*} a_{y}^{*} a_{y} a_{x} .
\end{aligned}
$$

That is:

$$
e^{-i \mathcal{H}_{N} t / \varepsilon} \psi=\left(\psi^{(0)}, e^{-i H_{N}^{(1)} t / \varepsilon} \psi^{(1)}, \ldots, e^{-i H_{N}^{(n)} t / \varepsilon} \psi^{(n)}, \ldots\right) .
$$

- For simplicity, suppose that the initial datum is a Slater determinant:

$$
\psi=\left(0,0, \ldots, 0, \psi_{\text {Slater }}, 0, \ldots\right)
$$

where the only nontrivial entry is the one associated to $n=N$.

- Slater determinants can be conveniently represented via Bogoliubov transformations.

Bogoliubov transformations

- Let $\mathcal{F} \ni \psi=\left(0,0, \ldots, \psi_{\text {Slater }}, 0, \ldots\right)$. There exists $R: \mathcal{F} \rightarrow \mathcal{F}$ s.t.:

1. $\psi=R \Omega$ with $R^{*} R=1$
2. Let $\left\{f_{i}\right\}_{i=1}^{\infty}=$ basis of $L^{2}\left(\mathbb{R}^{3}\right)$, with $\left\{f_{i}\right\}_{i=1}^{N}$ orbitals of $\psi_{\text {Slater }}$. Then:

$$
R a\left(f_{i}\right) R^{*}=\left\{\begin{array}{cc}
a^{*}\left(f_{i}\right) & \text { for } i \leq N \\
a\left(f_{i}\right) & \text { for } i>N
\end{array}\right.
$$

- Equivalently, $R a(g) R^{*}=a(u g)+a^{*}(\overline{v g})$, with

$$
u \equiv u_{N}=1-\omega_{N}, \quad v \equiv v_{N}=\sum_{i=1}^{N}\left|\overline{f_{i}}\right\rangle\left\langle f_{i}\right| .
$$

Important properties: $\quad u_{N} \bar{v}_{N}=0, \quad \bar{v}_{N} v_{N}=\omega_{N}$.

Bogoliubov transformations

- Let $\mathcal{F} \ni \psi=\left(0,0, \ldots, \psi_{\text {Slater }}, 0, \ldots\right)$. There exists $R: \mathcal{F} \rightarrow \mathcal{F}$ s.t.:

1. $\psi=R \Omega$ with $R^{*} R=1$
2. Let $\left\{f_{i}\right\}_{i=1}^{\infty}=$ basis of $L^{2}\left(\mathbb{R}^{3}\right)$, with $\left\{f_{i}\right\}_{i=1}^{N}$ orbitals of $\psi_{\text {Slater }}$. Then:

$$
R a\left(f_{i}\right) R^{*}=\left\{\begin{array}{cc}
a^{*}\left(f_{i}\right) & \text { for } i \leq N \\
a\left(f_{i}\right) & \text { for } i>N
\end{array}\right.
$$

- Equivalently, $R a(g) R^{*}=a(u g)+a^{*}(\overline{v g})$, with

$$
u \equiv u_{N}=1-\omega_{N}, \quad v \equiv v_{N}=\sum_{i=1}^{N}\left|\overline{f_{i}}\right\rangle\left\langle f_{i}\right| .
$$

Important properties: $\quad u_{N} \bar{v}_{N}=0, \quad \bar{v}_{N} v_{N}=\omega_{N}$.

- In general, $R_{t}:=$ Bogoliubov transf. corresp. to $\omega_{N, t}=\sum_{i=1}^{N}\left|f_{i, t}\right\rangle\left\langle f_{i, t}\right|$. The state $R_{t} \Omega$ is the vacuum for the new operators $R_{t} a\left(f_{i}\right) R_{t}^{*}$.

Estimating the distance between density matrices

- The quantity $\operatorname{tr}_{L^{2}\left(\mathbb{R}^{3}\right)} \gamma_{N, t}^{(1)}\left(1-\omega_{N, t}\right)$ allows to estimate the distance between the states. In fact:

$$
\begin{aligned}
\left\|\gamma_{N, t}^{(1)}-\omega_{N, t}\right\|_{\text {HS }}^{2} & =\operatorname{tr}\left(\gamma_{N, t}^{(1) 2}+\omega_{N, t}^{2}-\omega_{N, t} \gamma_{N, t}^{(1)}-\gamma_{N, t}^{(1)} \omega_{N, t}\right) \\
& \leq 2 \operatorname{tr} \gamma_{N, t}^{(1)}\left(1-\omega_{N, t}\right)
\end{aligned}
$$

where we used $\gamma_{N, t}^{(1)} \leq 1, \omega_{N, t} \leq 1$, together with $\operatorname{tr} \gamma_{N, t}^{(1)}=\operatorname{tr} \omega_{N, t}=N$.

Estimating the distance between density matrices

- The quantity $\operatorname{tr}_{L^{2}\left(\mathbb{R}^{3}\right)} \gamma_{N, t}^{(1)}\left(1-\omega_{N, t}\right)$ allows to estimate the distance between the states. In fact:

$$
\begin{aligned}
\left\|\gamma_{N, t}^{(1)}-\omega_{N, t}\right\|_{\mathrm{HS}}^{2} & =\operatorname{tr}\left(\gamma_{N, t}^{(1) 2}+\omega_{N, t}^{2}-\omega_{N, t} \gamma_{N, t}^{(1)}-\gamma_{N, t}^{(1)} \omega_{N, t}\right) \\
& \leq 2 \operatorname{tr} \gamma_{N, t}^{(1)}\left(1-\omega_{N, t}\right)
\end{aligned}
$$

where we used $\gamma_{N, t}^{(1)} \leq 1, \omega_{N, t} \leq 1$, together with $\operatorname{tr} \gamma_{N, t}^{(1)}=\operatorname{tr} \omega_{N, t}=N$.

- On the other hand,

$$
2 \operatorname{tr} \gamma_{N, t}^{(1)}\left(1-\omega_{N, t}\right)=\langle\mathcal{U}(t) \Omega, \mathcal{N} \mathcal{U}(t) \Omega\rangle
$$

where:

$$
\begin{array}{rlr}
\mathcal{N} & =\bigoplus_{n \geq 0} n \mathbb{1}_{L^{2}\left(\mathbb{R}^{3 n}\right)}=\sum_{i=1}^{\infty} a^{*}\left(f_{i}\right) a\left(f_{i}\right) & \quad \text { [Number operator.] } \\
\mathcal{U}(t) & =R_{t}^{*} e^{-i \mathcal{H}_{N} t / \varepsilon} R_{0} & \text { [Fluctuation dynamics.] }
\end{array}
$$

- Rmk. $\mathcal{U}(t)$ does not preserve the number of particles!

Growth of number of fluctuations

- $\langle\mathcal{U}(t) \Omega, \mathcal{N} \mathcal{U}(t) \Omega\rangle$ can be controlled with a Gronwall-type inequality. The operator \mathcal{N} commutes with most of the terms in the generator of $\mathcal{U}(t)$.

Growth of number of fluctuations

- $\langle\mathcal{U}(t) \Omega, \mathcal{N} \mathcal{U}(t) \Omega\rangle$ can be controlled with a Gronwall-type inequality. The operator \mathcal{N} commutes with most of the terms in the generator of $\mathcal{U}(t)$. With $a^{*}\left(v_{x}\right)=\int d y a_{y}^{*} v(y ; x)$ and $a^{*}\left(u_{x}\right)=\int d y a_{y}^{*} u(y ; x)$:

$$
\begin{aligned}
& i \varepsilon \partial_{t}\langle\mathcal{U}(t) \Omega, \mathcal{N} \mathcal{U}(t) \Omega\rangle \\
&=-4 i \varepsilon^{3} \operatorname{Im} \int d x d y V(x-y)\left\langle\mathcal{U}(t) \Omega,\left(a\left(\bar{v}_{t ; x}\right) a\left(\bar{v}_{t ; y}\right) a\left(u_{t ; y}\right) a\left(u_{t ; x}\right)\right.\right. \\
&\left.\left.+a^{*}\left(u_{t ; x}\right) a\left(\bar{v}_{t ; y}\right) a\left(u_{t ; y}\right) a\left(u_{t ; x}\right)+a^{*}\left(u_{t ; y}\right) a^{*}\left(\bar{v}_{t ; y}\right) a^{*}\left(\bar{v}_{t ; x}\right) a\left(\bar{v}_{t ; x}\right)\right) \mathcal{U}(t) \Omega\right\rangle \\
&+4 i \varepsilon^{3} \operatorname{Im} \int d x d y V(x-y)\left\langle\mathcal{U}(t) \xi,\left(\omega_{N, t}(y ; x) a^{*}\left(u_{t, y}\right) a^{*}\left(\bar{v}_{t, x}\right)\right) \mathcal{U}(t) \Omega\right\rangle
\end{aligned}
$$

Growth of number of fluctuations

- $\langle\mathcal{U}(t) \Omega, \mathcal{N} \mathcal{U}(t) \Omega\rangle$ can be controlled with a Gronwall type inequality. The operator \mathcal{N} commutes with most of the terms in the generator of $\mathcal{U}(t)$.
- The largest term appearing in $i \varepsilon \partial_{t}\langle\mathcal{U}(t) \Omega, \mathcal{N} \mathcal{U}(t) \Omega\rangle$ is:

$$
(*)=\varepsilon^{3} \int d x d y V(x-y)\left\langle\mathcal{U}(t) \Omega, a\left(u_{x ; t}\right) a\left(u_{y ; t}\right) a\left(\bar{v}_{y ; t}\right) a\left(\bar{v}_{x ; t}\right) \mathcal{U}(t) \Omega\right\rangle
$$

It would be zero, if V was constant. We want to gain from orthonormality in both x and y integrations.

Growth of number of fluctuations

- $\langle\mathcal{U}(t) \Omega, \mathcal{N} \mathcal{U}(t) \Omega\rangle$ can be controlled with a Gronwall type inequality. The operator \mathcal{N} commutes with most of the terms in the generator of $\mathcal{U}(t)$.
- The largest term appearing in $i \varepsilon \partial_{t}(\mathcal{U}(t) \Omega, \mathcal{N} \mathcal{U}(t) \Omega\rangle$ is:

$$
(*)=\varepsilon^{3} \int d x d y V(x-y)\left\langle\mathcal{U}(t) \Omega, a\left(u_{x ; t}\right) a\left(u_{y ; t}\right) a\left(\bar{v}_{y ; t}\right) a\left(\bar{v}_{x ; t}\right) \mathcal{U}(t) \Omega\right\rangle
$$

It would be zero, if V was constant. We want to gain from orthonormality in both x and y integrations. First try:

$$
\begin{aligned}
&(*)=\varepsilon^{3} \int d p \hat{V}(p)\left\langle\mathcal{U}(t) \Omega,\left(\int d x a\left(u_{x ; t}\right) e^{i p x} a\left(\bar{v}_{x ; t}\right)\right)\right. \\
&\left.\cdot\left(\int d y a\left(u_{y ; t}\right) e^{-i p y} a\left(\bar{v}_{y ; t}\right)\right) \mathcal{U}(t) \Omega\right\rangle \\
& \leq \varepsilon^{3} \int d p \hat{V}(p)\left\|u_{t} e^{i p x} \bar{v}_{t}\right\|_{\text {tr }}^{2}
\end{aligned}
$$

where we used that $\left\|\int d r_{1} d r_{2} A\left(r_{1}, r_{2}\right) a_{r_{1}} a_{r_{2}}\right\|_{\text {op }} \leq\|A\|_{\text {tr }}$.

Global commutator estimates

- By orthonormality of u and v,

$$
\begin{aligned}
\varepsilon^{3} \int d p \hat{V}(p)\left\|u_{t} e^{i p x} \bar{v}_{t}\right\|_{\mathrm{tr}}^{2} & \leq \varepsilon^{3} \int d p \hat{V}(p)\left\|\left[\omega_{N, t}, e^{i p x}\right]\right\|_{\mathrm{tr}}^{2} \\
& \leq C \varepsilon^{3}(N \varepsilon)^{2}
\end{aligned}
$$

provided $\left\|\left[\omega_{N, t}, e^{i p x}\right]\right\|_{\mathrm{tr}} \leq C N \varepsilon|p| \quad$ [Global s.c. structure.]

- This strategy works for the mean-field regime, where $\varepsilon^{3}=N^{-1}$. It gives:

$$
\left|\varepsilon \partial_{t}\langle\mathcal{U}(t) \Omega, \mathcal{N} \mathcal{U}(t) \Omega\rangle\right| \leq C N \varepsilon^{2} \Rightarrow\langle\mathcal{U}(t) \Omega, \mathcal{N} \mathcal{U}(t) \Omega\rangle \leq C N \varepsilon \ll N .
$$

Global commutator estimates

- By orthonormality of u and v,

$$
\begin{aligned}
\varepsilon^{3} \int d p \hat{V}(p)\left\|u_{t} e^{i p x} \bar{v}_{t}\right\|_{\mathrm{tr}}^{2} & \leq \varepsilon^{3} \int d p \hat{V}(p)\left\|\left[\omega_{N, t}, e^{i p x}\right]\right\|_{\mathrm{tr}}^{2} \\
& \leq C \varepsilon^{3}(N \varepsilon)^{2}
\end{aligned}
$$

provided $\left\|\left[\omega_{N, t}, e^{i p x}\right]\right\|_{\mathrm{tr}} \leq C N \varepsilon|p| \quad$ [Global s.c. structure.]

- This strategy works for the mean-field regime, where $\varepsilon^{3}=N^{-1}$. It gives:

$$
\left|\varepsilon \partial_{t}\langle\mathcal{U}(t) \Omega, \mathcal{N} \mathcal{U}(t) \Omega\rangle\right| \leq C N \varepsilon^{2} \Rightarrow\langle\mathcal{U}(t) \Omega, \mathcal{N} \mathcal{U}(t) \Omega\rangle \leq C N \varepsilon \ll N .
$$

- The strategy however fails for extended systems, since there $\varepsilon^{3}=\varrho^{-1}$ and we lose two volume factors! It would lead to the useless bound:

$$
\left|\varepsilon \partial_{t}\langle\mathcal{U}(t) \Omega, \mathcal{N} \mathcal{U}(t) \Omega\rangle\right| \lesssim|\Lambda|^{2} \varepsilon^{-1} .
$$

To improve, we need the exploit orthonormality at a smaller scale.

Local commutator estimate

- Using that, for $n \in \mathbb{N}$ suitably large:

$$
V(x-y)=\int d p e^{i p \cdot(x-y)} \frac{1}{1+|p|^{2 n}}\left(1+|p|^{2 n}\right) \hat{V}(p) \equiv \int d z G(x-z) F(y-z)
$$

for two nice functions F, G localized at 0 , we have:

$$
\begin{aligned}
& \varepsilon^{3} \int d x d y V(x-y)\left\langle\mathcal{U}(t) \Omega, a\left(u_{x ; t}\right) a\left(u_{y ; t}\right) a\left(\bar{v}_{y ; t}\right) a\left(\bar{v}_{x ; t}\right) \mathcal{U}(t) \Omega\right\rangle= \\
& \varepsilon^{3} \int d z\left\langle\mathcal{U}(t) \Omega,\left(\int d x a\left(u_{x ; t}\right) F_{z}(x) a\left(\bar{v}_{x ; t}\right)\right)\left(\int d y a\left(u_{y ; t}\right) G_{z}(y) a\left(\bar{v}_{y ; t}\right)\right) \mathcal{U}(t) \Omega\right\rangle \\
& \quad \text { with } F_{z}(x) \equiv F(x-z) \text { and } G_{z}(y) \equiv G(y-z) .
\end{aligned}
$$

Local commutator estimate

- Using that, for $n \in \mathbb{N}$ suitably large:

$$
V(x-y)=\int d p e^{i p \cdot(x-y)} \frac{1}{1+|p|^{2 n}}\left(1+|p|^{2 n}\right) \hat{V}(p) \equiv \int d z G(x-z) F(y-z)
$$

for two nice functions F, G localized at 0 , we have:

$$
\begin{aligned}
& \varepsilon^{3} \int d x d y V(x-y)\left\langle\mathcal{U}(t) \Omega, a\left(u_{x ; t}\right) a\left(u_{y ; t}\right) a\left(\bar{v}_{y ; t}\right) a\left(\bar{v}_{x ; t}\right) \mathcal{U}(t) \Omega\right\rangle= \\
& \varepsilon^{3} \int d z\left\langle\mathcal{U}(t) \Omega,\left(\int d x a\left(u_{x ; t}\right) F_{z}(x) a\left(\bar{v}_{x ; t}\right)\right)\left(\int d y a\left(u_{y ; t}\right) G_{z}(y) a\left(\bar{v}_{y ; t}\right)\right) \mathcal{U}(t) \Omega\right\rangle \\
& \quad \text { with } F_{z}(x) \equiv F(x-z) \text { and } G_{z}(y) \equiv G(y-z) .
\end{aligned}
$$

- Proceeding as before: $\left(\right.$ with $\left.X_{\Lambda}(z)=1+\operatorname{dist}(z, \Lambda)^{4}\right)$

$$
(*) \leq \varepsilon^{3} \int d z \frac{1}{X_{\Lambda}(z)^{2}}\left(X_{\Lambda}(z)\left\|\left[\omega_{N, t}, F_{z}\right]\right\|_{\operatorname{tr}}\right)\left(X_{\Lambda}(z)\left\|\left[\omega_{N, t}, G_{z}\right]\right\|_{\operatorname{tr}}\right)
$$

and we would like to estimate each parenthesis with $C \varepsilon^{-2}$.

Propagation of the local semiclassical structure

- By some algebra with commutators, and by the monotonicity properties of the trace norm, it turns out that it is enough to control:

$$
\begin{equation*}
X_{\Lambda}(z)\left\|\mathcal{W}_{z}\left[\omega_{N, t}, e^{i p \cdot x}\right]\right\|_{\operatorname{tr}} \tag{**}
\end{equation*}
$$

with $\mathcal{W}_{z}(x)=\frac{1}{1+|x-z|^{4}}$.

Propagation of the local semiclassical structure

- By some algebra with commutators, and by the monotonicity properties of the trace norm, it turns out that it is enough to control:

$$
X_{\Lambda}(z)\left\|\mathcal{W}_{z}\left[\omega_{N, t}, e^{i p \cdot x}\right]\right\|_{\mathrm{tr}}
$$

$$
(* *)
$$

with $\mathcal{W}_{z}(x)=\frac{1}{1+|x-z|^{4}}$. To estimate this quantity in terms of the initial datum, we ultimately need to understand $U_{\mathrm{H}}(t ; 0)^{*} \mathcal{W}_{z}(\hat{x}) U_{\mathrm{H}}(t ; 0)$ with:

$$
i \varepsilon \partial_{t} U_{\mathrm{H}}(t ; 0)=\left(-\varepsilon^{2} \Delta+\varepsilon^{3} \rho_{t} * V\right) U_{\mathrm{H}}(t ; 0) .
$$

Propagation of the local semiclassical structure

- By some algebra with commutators, and by the monotonicity properties of the trace norm, it turns out that it is enough to control:

$$
\begin{equation*}
X_{\Lambda}(z)\left\|\mathcal{W}_{z}\left[\omega_{N, t}, e^{i p \cdot x}\right]\right\|_{\operatorname{tr}} \tag{**}
\end{equation*}
$$

with $\mathcal{W}_{z}(x)=\frac{1}{1+|x-z|^{4}}$. To estimate this quantity in terms of the initial datum, we ultimately need to understand $U_{\mathrm{H}}(t ; 0)^{*} \mathcal{W}_{z}(\hat{x}) U_{\mathrm{H}}(t ; 0)$ with:

$$
i \varepsilon \partial_{t} U_{\mathrm{H}}(t ; 0)=\left(-\varepsilon^{2} \Delta+\varepsilon^{3} \rho_{t} * V\right) U_{\mathrm{H}}(t ; 0)
$$

We prove that, for $\hat{x}(t)=\hat{x}-t i \varepsilon \nabla$, for times for which excessive concentration does not occurr:

$$
U_{\mathrm{H}}(t ; 0)^{*} \mathcal{W}_{z}(\hat{x}) U_{\mathrm{H}}(t ; 0) \leq C \mathcal{W}_{z}(\hat{x}(t))
$$

which is the key ingredient to show that $\left({ }^{(* *)}\right.$ can be controlled by:

$$
X_{\Lambda}(z)\left\|\mathcal{W}_{z}(\hat{x}(t))\left[\omega_{N}, e^{i p \cdot x}\right]\right\|_{\mathrm{tr}}+X_{\Lambda}(z)\left\|\mathcal{W}_{z}(\hat{x}(t))\left[\omega_{N}, \varepsilon \nabla\right]\right\|_{\mathrm{tr}} \lesssim \varepsilon^{-2} .
$$

Conclusions

- We discussed the derivation of the time-dependent Hartree equation for extended systems, at high density.
- The analysis builds on previous work [BPS14] for the mean-field regime, with the main crucial addition of exploiting a local semiclassical structure of the initial datum.
- Much more difficult to propagate along the Hartree flow. Need to rule out excessive concentration of particles, which we do for short times (Long times?)
- The method allows to access the macroscopic dynamics of extended many-body Fermi gases (for the first time, as far as I know).

Conclusions

- We discussed the derivation of the time-dependent Hartree equation for extended systems, at high density.
- The analysis builds on previous work [BPS14] for the mean-field regime, with the main crucial addition of exploiting a local semiclassical structure of the initial datum.
- Much more difficult to propagate along the Hartree flow. Need to rule out excessive concentration of particles, which we do for short times (Long times?)
- The method allows to access the macroscopic dynamics of extended many-body Fermi gases (for the first time, as far as I know).
- Thank you!

