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Summary

Summary

e Introduction: many-body Fermi gases. Extended systems with
long-range interactions (Kac scaling). Equivalent to high density regime.

e Nonlinear effective theory at high-density: Hartree-Fock theory.

e Main result: Derivation of the time-dependent Hartree equation for
extended systems at high density.

e Sketch of the proof. Control of fluctuations around limiting equation,
local semiclassical structure.

e Conclusions.
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Many-body Fermi gases

o Consider a system of N fermionic particles, in a domain A C R3.

State of the system: ¢y € L2(R3V),

YN (T, 2N) = sgn(T)UN (Tr(1), - - -5 Ta(N)) -
e Many-body Hamiltonian:

N N
HY™P = (=0 + Vet () + Y V(@i — ),

j=1 i<j
where Vi confines the particles in A, and V' is a bounded
two-body interaction.
e The average particle density of the system is:

N
0= -
Al

For the moment, we shall suppose that the density is order 1.

Marcello Porta (SISSA) Fermionic dynamics June 14, 2022

2/25



Introduction

Equilibrium and dynamical properties

e The spectral properties of H]t\ﬁap play an important role in understanding
the behavior of the system at low temperature. Ground state energy:

(Yn, HNn) _

EN =
wnel2®N) w3

e Quantum dynamics. Suppose that ¥ equal, or close, to the ground
state of H]t\;ap. Remove the trap at t = 0. Evolution:

10N = HNYn g YN0 = YN -

The existence and uniqueness of the solution is provided by the spectral
theorem, Yy ¢ = e Hntyy.
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Introduction

Equilibrium and dynamical properties

e The spectral properties of H]t\ﬁap play an important role in understanding
the behavior of the system at low temperature. Ground state energy:

(Yn, HNn) _

EN =
wnel2®N) w3

e Quantum dynamics. Suppose that ¥ equal, or close, to the ground
state of H]t\;ap. Remove the trap at t = 0. Evolution:

10N = HNYn g YN0 = YN -

The existence and uniqueness of the solution is provided by the spectral
theorem, Yy ¢ = e Hntyy.

e For realistic values of N, it is extremely hard to gain quantitative
information about the system. Typical questions, for large V:

o Computation of En?
e Evolution of local observables?

e How to describe correlations among particles?
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Introduction

Long range interactions

e Such problems are way too hard from the analytic viewpoint. The
analysis becomes more accessible in suitable scaling regimes.

e Kac scaling. Replace V(xz — y) by
Ve(x —y) = V(e(z —y)) for e < 1.

Each particle interacts with O(s~3) particles. By the rescaling of the
coupling, [[V[[1 = [[V4]]:.

e The simplification introduced by the scaling is that one expects a local
averaging mechanism to take place (later).
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Long range interactions

e Such problems are way too hard from the analytic viewpoint. The
analysis becomes more accessible in suitable scaling regimes.

e Kac scaling. Replace V(xz — y) by
Ve(x —y) = V(e(z —y)) for e < 1.

Each particle interacts with O(s~3) particles. By the rescaling of the
coupling, [[V[[1 = [[V4]]:.

e The simplification introduced by the scaling is that one expects a local
averaging mechanism to take place (later).

e Rmk. ¢ is independent of N! Not mean-field (where ¢ = N~1/3). Still,
one expects that some of the predictions of mean-field are recovered.

In classical stat-mech: Lebowitz-Penrose '66. Derivation of van der Waals
theory for the liquid/vapor transition. Lieb ’66: extension to quantum.
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Introduction

Quantum dynamics

e The Fermi velocity in a gas with density o grows as o'/ (Lieb-Thirring).
Macroscopic time scale: 7 = ¢~ 't with ¢ = O(1). Schrédinger equation:

ie0ppN: = (Z SAY +€SZV Ti—Tj ))¢N,t~

1<J
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Introduction

Quantum dynamics

e The Fermi velocity in a gas with density o grows as o'/ (Lieb-Thirring).
Macroscopic time scale: 7 = ¢~ 't with ¢ = O(1). Schrédinger equation:

ie0ppN: = (Z SAY +€SZV Ti—Tj ))¢N,t~

1<J

e Next, we rescale lengths, so that the range of the potential is 1. Let:

Ueton) (@1, ... an) =N 2y (e oy, .. e tay)
we write:
ieU.0py.e = U, (Z —A, +53ZV — ;) )UZUeton,
1<J

= (Z e2A; +fszV i T )UEwN,t = HyUctnye -

j=1 i<J
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Quantum dynamics

e The Fermi velocity in a gas with density o grows as o'/ (Lieb-Thirring).
Macroscopic time scale: 7 = ¢~ 't with ¢ = O(1). Schrédinger equation:

ie0ppN: = (Z SAY +€SZV Ti—Tj ))¢N,t~

1<J

e Next, we rescale lengths, so that the range of the potential is 1. Let:

Ueton) (@1, ... an) =N 2y (e oy, .. e tay)
we write:
ieU.0py.e = U, (Z —A, +53ZV — ;) )UZUeton,
1<J

= (Z e2A; +fszV i T )UEwN,t = HyUctnye -

j=1 i<J

e Rmk. The effective density is: o = 531|VA| =0(E3) > 1.
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Introduction

One-particle density matrix

o Consider one-particle observables Oy = Zf;l 180NV=1) @ O ® 1%0-1),
We have:
1
(UN,t, ONYUNE) = trr2(ms) O’Yz(vy)t
(1)

where vy is the reduced one-particle density matrix. It has the kernel:

%(\}’)t(x;y) = N/d:@ o drNYN (T, T2, 2N )N (Y, T2, TN

Properties: 0< 'y](\})t <1, tr ,y(l) N.
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Introduction

One-particle density matrix

o Consider one-particle observables Oy = Zf;l 180NV=1) @ O ® 1%0-1),
We have:
1
(UN,t, ONYUNE) = trr2(ms) O’Y](v?t

where ’YI(\},)t is the reduced one-particle density matrix. It has the kernel:

%(\}’)t(x;y) = N/d:@ o drNYN (T, T2, 2N )N (Y, T2, TN

Properties: 0< 'y](\,) <1, tr ’y(l) N.

e Unfortunately, 71(\, )t does not solve a closed equation: it involves 71(3)”

whose evolution involves 71(\:?,)t etc. (BBGKY hierarchy).

e However, in some scaling regimes one expects 7( ) to be well
approximated by the solution of a suitable non- hnedl evolution equation.
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Introduction

One-particle density matrix

o Consider one-particle observables Oy = Zf;l 180NV=1) @ O ® 1%0-1),
We have:
1
(UN,t, ONYUNE) = trr2(ms) O’Y](v?t

where 71(\2 is the reduced one-particle density matrix. It has the kernel:

%(\}’)t(a:;y) = N/d:@ o drNYN (T, T2, 2N )N (Y, T2, TN

Properties: 0< 'y](\,) <1, tr ’y(l) N.

e Unfortunately, 71(\, )t does not solve a closed equation: it involves 71(3)”

whose evolution involves 7](\‘?; etc. (BBGKY hierarchy).
e However, in some scaling regimes one expects *y( ) to be well
approximated by the solution of a suitable non- hnedl evolution equation.

e Advantage wrt to Schrédinger: the solution is an operator on L?(R3)
with trace N instead of a function on L?(R3M).

Marcello Porta S/ Fermionic dynamics June 14, 2022 6 /25



Introduction

Slater determinants

e Recall the Schrodinger equation:

N N
7568251/)]\[7,5 = (Z —EzAj + 63 Z V((El - xj))d’N,t

j=1 i<j

The initial datum lives in A C R3, density 0 = O(¢~%). On uncorrelated
states, one expects a local averaging mechanism to take place:

(w3 Vi — o) = 5 [ dady Vi = @ty

i<j

with p(z) = yn+(x; 2) = density of particles at x.
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Introduction

Slater determinants

e Recall the Schrodinger equation:
N N
iEO YNy = (Z —*A; +¢€° Z V(i — ffj))ﬂ’N,t
j=1 i<j

The initial datum lives in A C R3, density 0 = O(¢~%). On uncorrelated
states, one expects a local averaging mechanism to take place:

(w3 Vi — o) = 5 [ dady Vi = @ty

i<j

with p(z) = yn+(x; 2) = density of particles at x.
e The most uncorrelated fermionic states are Slater determinants:

Yslater (T1, ..., TN) = \/% ngn(ﬂ)ﬁ(%u)) s N () S

with orthonormal f; € L*(R3).
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Hartree-Fock theory

e The HF approx. consists in replacing L2(R3Y) by the set of Slater dets.

e At equilibrium, the HF ground state energy of a confined system is:

EI%F = inf <w51atcra HN¢Slatcr>

Slater

= inf EFF (wy) ,
WN
with wy = Zf\]:1 | fi)(fi| the reduced 1IPDM of a Slater, and:

3
EF (o) = (At Visow + 5 [ dody V(o= 9) [p(@)p(w) ~ e (3 )]

(Hartree-Fock energy functional.)
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Hartree-Fock theory

e The HF approx. consists in replacing L2(R3Y) by the set of Slater dets.

e At equilibrium, the HF ground state energy of a confined system is:

EI%F = inf <w51atcra HN¢Slatcr>

Slater

= inf EFF (wy) ,
WN
with wy = Zf\]:1 | fi)(fi| the reduced 1IPDM of a Slater, and:

3
EF (o) = (At Visow + 5 [ dody V(o= 9) [p(@)p(w) ~ e (3 )]

(Hartree-Fock energy functional.)
e Proof of validity of the HF approximation (for the ground state energy)
o Bach '92: large atoms/molecules (analogous to mean-field)

o Graf-Solovej '94: extens. to Jellium (extended Coulomb system).
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Introduction

Time-dependent Hartree-Fock equation

o Let ¥ be given by the HF minimizer, and let Vexy = 0 at ¢ = 0.

o If one assumes that 1 is a Slater determinant for all times, it is not
difficult to derive a self-consistent evolution equation for the 1PDM:

1eQrwn + = [ —E2A+3p %V — Xy, WNA

with py(z) = wy (23 2) and X, (23y) = ¥V (2 — y)wn ().
(Time-dependent Hartree-Fock equation.)
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Introduction

Time-dependent Hartree-Fock equation

o Let ¥ be given by the HF minimizer, and let Vexy = 0 at ¢ = 0.
o If one assumes that 1 is a Slater determinant for all times, it is not
difficult to derive a self-consistent evolution equation for the 1PDM:

1eQrwn + = [ —E2A+3p %V — Xy, WNA

with py(2) = wi(z32) and Xe(wy) = ¥V (x — ylwne(z;y).
(Time-dependent Hartree-Fock equation.)

e The assumption that 1 is a Slater determinant is of course nontrivial.
In the mean-field regime, |A| = O(1) and ¢ = N~/3, for a suitable class
of initial data, the validity of the HF equation has been proved:

I7is — wiellus < C(t)  for all times t = O(1)
which has to be compared with the trivial bounds:

Iyihllas < N2 Jlwnlls = NY2.
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Rigorous results about the validity of tHF equation

We shall only discuss the mean-field/semiclassical scaling:

N N
€0 YN = (Z A+ ¥ Vi - mj))¢N,t

j=1 i<j
with £ = N~1/3 and initial datum confined in |A| = O(1).
e Elgart, Erdods, Schlein, Yau ’07: analytic V/, short times. BBGKY.
o Benedikter, P., Schlein '14: V € C?, all times. Fock space methods.
e Petrat, Pickl '16: similar result, first quantization.
e Benedikter, Jaksic, P., Saffirio, Schlein "16: ext. of [BPS] to mixed states.
e P., Rademacher, Saffirio, Schlein '17: Coulomb, conditional result.
e Chong, Lafleche, Saffirio '21: singular potentials, mixed states.

e Benedikter, Nam, P., Schlein, Seiringer ’22: bounded potentials, norm
approximation for a special class of pure states (bosonization).
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Introduction

Remarks

e As N — oo, the solution of the time-dependent HF equation converges to
the solution of the Vlasov equation (after Wigner transf.)

Wiz, p) + 2v -V Wi(z,p) = Vaul(V x p) - V,Wi(z, p)

with pV!(z) = [dpWi(z,p). (Under suitable regularity assumptions)
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Introduction

Remarks

e As N — oo, the solution of the time-dependent HF equation converges to
the solution of the Vlasov equation (after Wigner transf.)

0We(,p) + 20 - VoWi(,p) = Vo (V 5 p)) - V,We(, p)
with pV!(z) = [dpWi(z,p). (Under suitable regularity assumptions)

o All the previous results hold for the mean-field regime, e = N~1/3. In
particular, the coupling constant scales as N ~!.

e High density regime: N/|A| = g and ¢ = O(p~'/?). In contrast to the
mean-field regime, here one has three length scales:

o The size of the support of the initial datum, L ~ |[A|'/3
o The range of the interaction potential, / = O(1)
o The interparticle distance, § = O(p~'/?).

One has to capture the mean-field behavior at the O(1) scale.
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Main result
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Main result

Interlude: the free Fermi gas

e We consider initial data that are expected to describe ground states of
confined systems. Example: the free Fermi gas (homogeneous system).

Non-interacting ground state on T3 (3-torus of side L):

w:f/ﬂ /\.../\ka R
where fi(z) = e** /L% and k € (2r/L)Z3 (plane waves).

e The points k fill the Fermi ball:
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Main result

Interlude: the free Fermi gas

e We consider initial data that are expected to describe ground states of
confined systems. Example: the free Fermi gas (homogeneous system).

Non-interacting ground state on T3 (3-torus of side L):

’L/):fkl /\.../\ka ,
where fi(z) = /L% and k € (27/L)Z3 (plane waves).

e The points k fill the Fermi ball.

o |B(kr)| = N = L3p. The spacing between the lattice points is L1,
hence the Fermi momentum kp grows as kp ~ o'/

e Up to subleading corrections in L, we can assume that the Fermi
ball is completely filled.

e For interacting, homogeneous models, the free Fermi gas agrees in
energy with the HF ground state, up to corrections that are exp.
small in the density. [Gontier, Hainzl, Lewin ’18.]
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Main result

The free Fermi gas - density matrix

e Reduced one-particle density matrix:

1 e (m—
RC R S s
keB(kr)

o Consider the operator [e??® wy]. A simple computation shows that:
e, wn]| = [P, wn]> = Y [ fu) (il
keI,
with I, = {k € B(kr) | k+p ¢ B(kr)} (see figure). Also,

ip-xT 1 -
[, wnll(z;2) = 75 tr ([, wnll = 7511] = O(|pl™?)
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Main result

Semiclassical structure

e Given A CR3> and ¢ > 0 let N = [¢73|A|]. Hence, o ~ ¢ °.
We would like to capture the fact that wy is concentrated in A and:

wn () ~ 5_%(%)6(:6 ;L y) :
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Main result

Semiclassical structure

e Given A CR3> and ¢ > 0 let N = [¢73|A|]. Hence, o ~ ¢ °.

We would like to capture the fact that wy is concentrated in A and:

wn (1Y) ~ 5_%(36 - y)ﬁ(x ;L y) :

e Let us define the localizer W, and the weight X4 (2) as:
. 1 . 4
Wz(x) = m s XA(Z) =1+ dlSt(A,Z) .
(i) We suppose that, for ¢t € [0,T]:
XA(Z)HWZ(t)WNHtr <Ce P,

with W, (t) = e €A, eieAt (free evolution).

(ii) We shall say that wy satisfies the local semiclassical structure if:
Xa@|W:0) [ wn]ll,, < Clpl=™
Xa(2)|[W:(t)[eV,wn]||,, < Ce?

Htr
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Main result

Derivation of the Hartree equation for extended systems

Theorem (Fresta, P., Schlein 2022)

Let V€ LY(R3) such that:

max / dp (1 + o)V ()] < oo .
R3

a:la|<8
Let ¢ € L2(R3*N), and suppose that:
1 _ )
Iy’ —wnller < Ce°N for some § > 0,

where wy is a rank-IN orthogonal projection, and it satisfies the assumptions
(), (it). Let wy be the solution of the time-dep. Hartree equation:

iedwny = [ — A+ 3V % py, wny] -

Then, there exists Ty > 0 independent of € such that, for |t| < Ty:

1 s 1
||71(\},)t —wntllgs < Cmax{e2,e2} N2 .

Marcello Porta
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Main result

Remarks

e The result should be compared with the trivial estimates

IyWhllas < NY2 L Jlwwllas = NY2.
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Main result

Remarks

e The result should be compared with the trivial estimates
1
Ivivhlles < N2, el = N2
e The rate of convergence is independent of the size of the system:
—-1/2

v\ s — wavellus < Cmax{e?, 5}

Recall that ¢ ~ ¢~3. With respect to previous work [BPS14] we are able
to control the rate of convergence uniformly in the system size.

Marcello Porta (¢ Fermionic dynamics June 14, 2022 16 / 25



Main result

Remarks

e The result should be compared with the trivial estimates
Iviles < NV Jlonls = NY2

e The rate of convergence is independent of the size of the system:

1 s
1/2||7 —wn,tllus < Cmax{e?,e2}

Recall that ¢ ~ ¢~3. With respect to previous work [BPS14] we are able
to control the rate of convergence uniformly in the system size.

e The result actually holds for all times for which there exists C' > 0 s.t.:
trWown,y < e 3C . [Non-concentration estimate.]

We are able to prove this bound for |t| < T, with T}, = T (V), which can
be made arb. large for V small enough.

Another challenge: propagation of the local semiclassical structure.
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Main result

Remarks

e The result should be compared with the trivial estimates
1
v hllis < NY2 L e lus = N2
e The rate of convergence is independent of the size of the system:
—-1/2

v\ s — wavellus < Cmax{e?, 5}

Recall that ¢ ~ ¢~3. With respect to previous work [BPS14] we are able
to control the rate of convergence uniformly in the system size.

e The result actually holds for all times for which there exists C' > 0 s.t.:
trWown,y < e 3C . [Non-concentration estimate.]

We are able to prove this bound for |t| < T, with T}, = T (V), which can
be made arb. large for V small enough.

Another challenge: propagation of the local semiclassical structure.

e Our estimates are not strong enough to resolve the exchange term.
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Sketch of the proof

Sketch of the proof
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Sketch of the proof

Fermionic Fock space

e Fermionic Fock space:
F = CePr®m
n>1
Favy = @O0 . pm )y, Vacuum: Q = (1,0,0,...)
e Fermonic creation/annihilation operators a(f), a*(f) (f € L*(R?)):

(@ ()™M (@1, 20) = IZ Fa)p D (@, w1, @i, )

(a(f)Y) ™ (a1,...,20)

vn + l/dz?(z)d;(n""l)(m, Tly.eeyTn)-
Operator valued distributions: a, = a(d,), ak = a*(0,),
o) = [draF@ . a()= [drase).

e (Canonical anticommutation relations:

{a(),a*(9)} = (f,9)r2@s)  {a(f),alg)} = {a"(f);a"(9)} =0
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Sketch of the proof

Fock space dynamics

e The Hamiltonian can be lifted to the Fock space in a natural way:

o0

Hy = PHY

n=0

That is:
e—i’HNt/Ew _ (,(/}(O)7e—iH§vl)t/5w(1)7 B '7e—iH]<\;‘)t/a¢(n)7 ).
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Sketch of the proof

Fock space dynamics

e The Hamiltonian can be lifted to the Fock space in a natural way:
i - By
n=0

3
/dx eVaareVa, + % /dxdy V(z —ylayayaya, -

That is:
e—i’HNt/Ew _ (,(/}(O)7e—iH§vl)t/5w(1)7 B '7e—iH]<\;‘)t/a¢(n)7 ).

e For simplicity, suppose that the initial datum is a Slater determinant:

¢ = (0707--~707¢Slater,07~-~)

where the only nontrivial entry is the one associated to n = N.

e Slater determinants can be conveniently represented via Bogoliubov
transformations.
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Sketch of the proof

Bogoliubov transformations

e Let F 3¢ =1(0,0,...,%s1ater, 0, ...). There exists R : F — F s.t.:
1. ¢ = RQ with R*R = 1

2. Let {f;}22, = basis of L2(R?), with {f;}}V, orbitals of ¥sjater- Then:

« | a*(fi) fori<N
Ra(fi)R* = { a(f;) fori>N

e Equivalently, Ra(g)R* = a(ug) + a*(vg), with

N
u=uy =1—wpn, WEUN:Z|E><J61'|-
i=1

Important properties: unvn = 0, UNUN = WN.
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Sketch of the proof

Bogoliubov transformations

e Let F 3¢ =1(0,0,...,%s1ater, 0, ...). There exists R : F — F s.t.:
1. ¢ = RQ with R*R = 1

2. Let {f;}22, = basis of L2(R?), with {f;}}V, orbitals of ¥sjater- Then:

« | a*(fi) fori<N
Ra(fi)R* = { a(f;) fori>N

e Equivalently, Ra(g)R* = a(ug) + a*(vg), with

N
u=uy =1—wpn, WEUN:Z|E><J61'|-
i=1

Important properties: unvn = 0, UNUN = WN.

e In general, R, := Bogoliubov transf. corresp. to wy; = Zf\; | fie)(fitl-

The state R, is the vacuum for the new operators R.a(f;)R;.
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Sketch of the proof

Estimating the distance between density matrices

e The quantity tryz(gs) ’yf\})t(l —wpy ) allows to estimate the distance
between the states. In fact:

(1)2 (1 (1)

1
7S —wnelfis = tr(rGF + Wk, —wnary) — T8 hwne)

< 2trfy(1) (1—wny)

where we used '71(\/ <1, wns <1, together with tr fyj(\})t =trwy: = N.
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Sketch of the proof

Estimating the distance between density matrices

e The quantity tryz(gs) ’)/f\})t(l —wpy ) allows to estimate the distance
between the states. In fact:

1 1)2 1 1
IV — wnells = tr(V§r + Wi — waTN ) — TNAONL)

< 2trfy(1) (1—wny)

where we used '71(\/ <1, wns <1, together with tr fyj(\})t =trwy: = N.

e On the other hand,

20y (1 — we) = UOQNUL)R)
where:
o0
N = @ nlp2(gsn) = Z a*(fi)a(fs) [Number operator.]
n>0 =1
U(t) = Rfe Mnt/eR, [Fluctuation dynamics.]

e Rmk. U(t) does not preserve the number of particles!
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Sketch of the proof

Growth of number of fluctuations

o (UHQ,NU(E)Q) can be controlled with a Gronwall-type inequality. The
operator N’ commutes with most of the terms in the generator of U(t).
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Sketch of the proof

Growth of number of fluctuations

o (U)Q,NU)Q) can be controlled with a Gronwall-type inequality. The
operator J\f commutes with most of the terms in the generator of U(t).
With a*(v,) = [ dyajv(y;z) and a*(u,) = [ dy aju(y; z):

120 (U)Q, NUL)Q)
= —4ie’Im /d;cdy V(z—vy) <Z/{(t)Q, (a(@t;x)a(ﬂt;y)a(ut;y)a(ut;m)
+ a* (ut;2)a(Oty)a(usy)a(usz) + a* (usy)a™ Oty )a™ (Et;z)a@t;z)) Z/l(t)Q>

+ 4i531m/dzdy V(z—vy) <Z/{(t)§, (wN’t(y; z)a* (ut,y)a” (Ht’m))lx{(t)ﬂ>
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Sketch of the proof

Growth of number of fluctuations

o (U)Q,NU)Q) can be controlled with a Gronwall type inequality. The
operator A/ commutes with most of the terms in the generator of U(t).

e The largest term appearing in €9 (U(t)Q, NU(L)Q) is:
(x) =€’ / dady V(x — y) (U®)Q, (e aty: )a(Ty)a(Ta U (1))

It would be zero, if V' was constant. We want to gain from
orthonormality in both z and y integrations.
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Sketch of the proof

Growth of number of fluctuations

o (U)Q,NU)Q) can be controlled with a Gronwall type inequality. The
operator A/ commutes with most of the terms in the generator of U(t).

e The largest term appearing in €9 (U(t)Q, NU(L)Q) is:

(x) =€’ / dady V(x — y) (U®)Q, (e aty: )a(Ty)a(Ta U (1))

It would be zero, if V' was constant. We want to gain from
orthonormality in both x and y integrations. First try:

(%) :53/de(p)<U(t)Q’ (/d“(“z;t)eipza(%t))
. (/dya(uy;t)e_ipya(ﬁy;t))u(t)Q>
<&l / dpV (p) use™ w15,

where we used that H [ dridraA(ry,r2)ay, ar, Hop < | A||te-
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Sketch of the proof

Global commutator estimates

e By orthonormality of u and v,
& [avolucral <2 [ vl
< Ce3(Ne)?,

provided ||[wn1, e”””]”tr < CNelp| [Global s.c. structure.]

e This strategy works for the mean-field regime, where £3 = N~1. It gives:

|e0 (UMQNU)Q)| < CNe* = U(t)QLNUE)Q) < CNe < N.
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Sketch of the proof

Global commutator estimates

e By orthonormality of u and v,

& [avwlocal <= [ Vool
< Ce3(Ne)?,
provided ||[wn1, e”””]”tr < CNelp| [Global s.c. structure.]
e This strategy works for the mean-field regime, where £3 = N~1. It gives:
|e0 (UMQNU)Q)| < CNe* = U(t)QLNUE)Q) < CNe < N.

o The strategy however fails for extended systems, since there ¢ = o1

and we lose two volume factors! It would lead to the useless bound:
led (UOQNUBQ)| S AP

To improve, we need the exploit orthonormality at a smaller scale.
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Sketch of the proof

Local commutator estimate

e Using that, for n € N suitably large:

. 1
V)= [aperi-s

PV = [ dGa—aPu-2)

for two nice functions F, GG localized at 0, we have:
53 /dl‘dyV(ﬂ? - y) <u(t)Qv a’(ux;t)a(uy;t)a’(ﬁy;t)a(fa:;t)u(t)9> =

& [z o, ( [ dwatu) P ( [ dyatu,Gewiam, uwe)

with F,(z) = F(z — 2) and G,(y) = G(y — 2).
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Sketch of the proof

Local commutator estimate

e Using that, for n € N suitably large:

. 1
V)= [aperi-s

PV = [ dGa—aPu-2)

for two nice functions F, G localized at 0, we have:
= / dady V(z — y)(UE)Q, a(tas) @ity a(y)a (T U L)L) =
e / dz (UL)Q, ( / dz a(um;t)Fz(x)a(Ux;tD ( / dy a(uy;t)Gz(y)a(iy;t))l/{(t)ﬂ>
with F.(z) = F(z — 2) and G.(y) = G(y — 2).
e Proceeding as before: (with X (z) = 1+ dist(z,A)*)
(¥) < 63/dzm (XA(Z)H[wN,t, Fz}Htr) (XA(Z)H[WN,t, Gz]||tr)

and we would like to estimate each parenthesis with C'e 2.
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Sketch of the proof

Propagation of the local semiclassical structure

e By some algebra with commutators, and by the monotonicity properties
of the trace norm, it turns out that it is enough to control:

XA(z)Hl/\/z[w]\r,t,eip'”]Htr (%)

with W, (x) = 1

1+|z—z|%"
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Sketch of the proof

Propagation of the local semiclassical structure
e By some algebra with commutators, and by the monotonicity properties
of the trace norm, it turns out that it is enough to control:
Xa(@)[W:lwwe, ™| , (%)

with W, (x) = 1+\w+2|4 To estimate this quantity in terms of the initial

datum, we ultimately need to understand Uy (t;0)* W, (2)Uy (¢;0) with:

10, Un (t;0) = (—2A + €3py x V)Un(t;0) .
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Sketch of the proof

Propagation of the local semiclassical structure

e By some algebra with commutators, and by the monotonicity properties
of the trace norm, it turns out that it is enough to control:

XA(z)Hl/\/z[w]\r,t,eip'”]Htr (%)

with W, (x) = 1+\w+2|4 To estimate this quantity in terms of the initial
datum, we ultimately need to understand Uy (t;0)* W, (2)Uy (¢;0) with:

10, Un (t;0) = (—2A + €3py x V)Un(t;0) .

We prove that, for &(t) = & — tieV, for times for which excessive
concentration does not occurr:

Uy (¢;0) W, (2)Un(t; 0) < CW,(E(t))
which is the key ingredient to show that (**) can be controlled by:

Xa(2)||[W=(2(1) [wn, e”"”’]“tr + XA(Z)||V\/Z(;%(t))[w1\/,EV]Htr <e? om
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Sketch of the proof

Conclusions

e We discussed the derivation of the time-dependent Hartree equation for
extended systems, at high density.

e The analysis builds on previous work [BPS14] for the mean-field regime,
with the main crucial addition of exploiting a local semiclassical
structure of the initial datum.

e Much more difficult to propagate along the Hartree flow. Need to rule
out excessive concentration of particles, which we do for short times
(Long times?)

e The method allows to access the macroscopic dynamics of extended
many-body Fermi gases (for the first time, as far as I know).
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Sketch of the proof

Conclusions

e We discussed the derivation of the time-dependent Hartree equation for
extended systems, at high density.

e The analysis builds on previous work [BPS14] for the mean-field regime,
with the main crucial addition of exploiting a local semiclassical
structure of the initial datum.

e Much more difficult to propagate along the Hartree flow. Need to rule
out excessive concentration of particles, which we do for short times
(Long times?)

e The method allows to access the macroscopic dynamics of extended
many-body Fermi gases (for the first time, as far as I know).

e Thank you!

Marcello Porta S/ Fermionic dynamics June 14, 2022 25 /25



	Summary
	Introduction
	Introduction
	Main result
	Sketch of the proof

