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Lecture 6



e Harmonic Oscillator.

Let us begin with the operator of harmonic oscillator

_ 2

The spectrum of this operator is discrete and equals {2k + 1}, k = 0,1,2,....
In particular,

H—-1:=A"A = —i—l—x i—|—:1: > ()
dx dx

which implies H > 1.

Remark. Note that the values of the symbol of the Harmonic oscillator £2 42 >

0 fills the semiaxis [0, o0) but the operator H > 1. The latter inequality is sharp

and the eigenfunction corresponding to the eigenvalue one is e~ /2,

Remark. It F is the Fourier transform the



o H >3777

One has to be careful with factorizations of operators. Indeed, let us consider

d 1\ [ d 1
B'B=|-——+4z——)|—4+z—=
( daz—i_x x) <al:zi—|_aj :r;)
d? ) 1 1 d? 2
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This implies
d? 5

Question: Where is a mistake?



Among the operators satisfying the property H = F*HJF there are

d2m

H=-—
dx2'm

+ 2™, m € N.

In this lecture we shall consider the operator whose symbol equals
2 cosh & + 2 cosh .

All such operators are positive and have discrete spectrum.

e (Question: Is there a possibility to apply a version of the Darboux transform
for such operators and find their spectrum.



e Coherent state transform.

Let us consider the map ® : L?(R) — L?*(R?) and defined by

o

3a.€) = (B ) (&) = / eI gz — () dy,

— 00

where ,
g(z) = (1/m) /e " /2.

Note that [~ g¢*(z)dz =1 and

00 (@) = [ (o — e g (- y)uly) dsdyds

= [ 8= (e =290 = ) 010) dyd=

_ () /OO Pla - 2)dz = ().

— OO

Theorem.
The map ® : L*(R) — L?(R?) is an isometry, such that ®*® = [ and P = $P*

is an orthogonal projection in L*(R?).



e Action of the coherent state transform on the Harmonic oscillator.

Let us compute ®*£2®.

(PP, ) = /R T (w = 2) € eTTg(2 — y)P(y)P(w) dEdydzda

1 d d

= el 2mi€x .
 4An? Jpa dx (¢ Jolr—2) 5 dy

_ 1 2mig(r—y) d (
42 R4€ dx gl = 2)¥

= (@@= 2 @) + e - ) (@) ) dzdr

R
1 o

T 4n?

(e72™%Y) g(z — y)i(y)¥ () dédydzdx

) ( ) dedydzdz

1
(') dz 11915 + 1[5

— OO0

Corollary.
> ~ 1
W= [ oo dadé - 5lv13



Similarly computing ®*2?® we obtain

(22D, ) = / ?Tg(x — 2) 22 €TV g (2 — y)(y)Y(x) dEdydzda

R4
— [ 20— 2@ dedn = | (@ = GO () dedo
R2 R2
— [ SwPds [ ffod [ s
Corollary

S 1
lowlp = [ 215 dudt - 51013

— 00

Proposition. There is the following representation of the quadratic form of
the Harmonic oscillator H

O
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e Further properties of the coherent state transform.

Let us introduce the convolution
prv@) = [ ol yiwdy
and let F be the Fourier transtorm

3(6) = (Fo)(€) = /_ " om0 d.

Lemma.

~

(@0).6) = P& = [ T TG —adn  (x)

and

/_OO (2, €)[Pdw = /_OO B(E —n)P[Gn) 2 dn = [ = G2 (€). (%)

/R (. €)|? dé = /_OO VI —y)Plg@)* dy = ([0 = [g]") () (x %)



Proof. Let us first show (x)

e [ g gl — € d
_ 6—271'72:1:5 / 6—27rinzw(z)627r7j77x627r7j(77—£)tg(t) dtdZd?]
R3
— e~ 2mixt / S(t+x — 2)(2)e 2™ g(t) dtdz it =2z — 1]
R2

- /OO e 2T (2)g(w — 2) dz = P(x, ),

— o0

In order to obtain (k%) we write by using ()

/ D, 6)2de = [ Do) e G(p — £) D(n) ™50 — &) ddpdn

_ R3

= [ Wwrge-oP

— 0

FExercise. Prove (x  %).



e Weyl operators.

We now consider a class of functional discrete operators that have some analogy
with Harmonic oscillators, but whose spectrum is more complicated.

Let
Up() = b +i)  and  Vi(a) = 2™ y(a).

Then
UVip(x) = e ip(x +14) = ' VUP().

The respective domains of these operators are

D(U) = {9 € LA(R) : e (&) € L*(R) |

and
D(V)={¢ € L*(R) : ™ (x) € L*(R)}.



Equivalently, D(U) consists of those functions v (x) which admit an analytic
continuation to the strip

{z=2x+iyeC: 0<y<1}
such that (x + iy) € L*(R) for all 0 < y < 1 and there is a limit

Y(r+1—10) = lim (x4 17— ie)

e—0t

in the sense of convergence in L?(R), which we will denote by 9(z + 7).
Question: Prove it.

The domains of U~! and V ~!can be characterised similarly and obviously

Up(x) =d(x—i) and V7 i(z) =e ""yY(a).



Our main object of study is the operator H
H=U+U"'4+Vv+Vv~!

whose symbol is 2 cosh & 4+ 2 cosh z.

Remark.

It was discovered by M. Aganagic, R. Dijkgraaf, A. Klemm, M. Marino, and
C. Vafa, that the functional-difference operators built from the Weyl operators
U and V, appear in the study of local mirror symmetry as a quantisation of
an algebraic curve, the mirror to a toric Calabi-Yau threefold. The spectral
properties of these operators were considered in A. Grassi, Y. Hatsuda, and M.
Marino.



Remark. The operator
H(z) = (U +U P+ V)p(z) =z +1) +lx — i) + e*™ ()

first appeared in the study of the quantum Liouville model on the lattice and
plays an important role in the representation theory of the non-compact quan-
tum group SL,(2;R). In the momentum representation it becomes the Dehn
twist operator in quantum Teichmuller theory.

In particular, R. Kashaev obtained the eigenfunction expansion theorem for
this operator in the momentum representation. It was stated as formal com-
pleteness and orthogonality relations in the sense of distributions. The spectral
analysis of the functional-difference operator H was done in the recent paper
of L. D. Faddeev and L. A. Takhtajan. The operator H was shown to be self-
adjoint with a simple absolutely continuous spectrum [2,00), and the authors
proved eigenfunction expansion theorem for H, by generalizing the classical
Kontorovich-Lebedev transform.



e Action of the coherent state transform on functional discrete operators.

We aim to find representations of (U, 1) and (V) in terms of coherent
states.
It follows from (xx) that

// 2 cosh (26 [, €)? dé dr = // 2 cosh(2n€)[(& — n)|?[G(n)|? dé dn,

and using
cosh(zx + y) = cosh x cosh y 4 sinh x sinh y

we obtain

//R2 2(:osh(27r§)|ibv(x,§)|2 d¢ dy
- / /R2 2 cosh (27 (& — 1)) [¢(€ — n)[* cosh(2mn)[g(n)|* d& dn
* //RQ 2sinh (27(& — 1)) (& — n)|?sinh(27n)|g(n)|? d€ dn.

The first integral on the right-hand side can be computed to be

(U + U D, ) ((V+V 13, 9).



//RQ 2 cosh (27(€ — n))[9(€ — )| cosh(2mn)|G(n) 2 dedn ()
T //R 2sinh (27(€ — ) [(€ — n)|? sinh(27n)[G(n)|* d€ dn .

Indeed, note that

2mix€ 2 h 27‘(‘ d 27rwc£ —27€ 2mEN )
[[ emmeacomieme) i) s = [[ e +E76) (€) de
_ // e27m(:c—|—z)£ 4+ 627rz(:1;—z)§> ¢(€) dg
R2
= (e +i) =z —i) = (U+ U )(z).

Therefore the first integral (x) equals

(U+UYy,9) /RCosh(27ﬂ7)|§(n)\2 dn=(U+U""Y,¢) (V+V~Hg,9)/2.



//R? 2cosh(27rf)\{pv(:y,§)‘2 de dy
::l/yQQQCosh(Qﬂ(ﬁ——n)ﬂiﬂi——n)P<x$h(2ﬂnH§(dH2d£dn
’ // 2sinh (27(€ — 1)) [9(€ — n)[2 sinh(2mn)[G()[2 dE . ()

Since g(x) = g(—=x), it holds that g(¢) = g(—¢) and consequently the integral
(%)
// 2sinh (27(€ — 1)) |9(€ — n)|2 sinh(27n)[G(n)|? d€ dn

vanishes.

Thus for ¢ € D(U) we obtain the representation

(W+U0w) =d [ 2com@rolia.€) de da

where

dl — 2 26_1/4

(V+V~1g,9)

< 1.



Similarly, we can use (* x %) to compute that

//R2 2 cosh(2mz) [(, )| d¢ dx = // 2 cosh(2mz) | (x — 2)|*|g(2)|? dx dz,

which with the help of the same trigonometric identity as above can be simplified
to

[ 2coshiome) e, ) dgda = (V + V0 (V4 V0. 0)/2

Thus for ¢ € D(V) we have the representation

(V4 V1), 0) = dy // 2 cosh(2rz) [z, )2 dé dx,
R2

where
do = 2 = 6_”2 <1
T (V+Vl)g,g) |




e Summary: Coherent state representation for H.

Summarising, we obtain a remarkable identity

(Hyp, ) = (U + U, 9) + (V+ V7, 9)
— //R2 2(dy cosh(27E) + da COSh(Qﬂ'LIj‘))’QZ(w) é‘)’Q d¢ dx.



e Deriving an Upper Bound.

Let {A\;}52; be the eigenvalues of H and let {1;}52; be the corresponding
orthonormal eigenfunctions which form a complete set. We first observe that

the coherent state representation of H yields

D A=)y =) (A= (Hoj ),

j>1 i>1

= ()\ _ / /R 2(dy cosh(2m€) + ds cosh(2ma)) |4 (x, )| d dy>

j>1 +

Note
[[[ 10560 dud = s =1



Therefore

> A=)y

j=1

_ Z ( / /R (A= 2dy cosh(2m€) — 2 cosh(2r)) [ (x, €)|? dé da:)

_|_

/ / — 2d, cosh(2m¢) — 2dy cosh(2mz)) > [;(, &)[* df da .
RQ

71>1

Denote e, ¢(y) = e*™“Yg(x — y). Since the eigenfunctions 1; form an orthonor-
mal basis in L*(R)

Z\%xf Zlemg U)I? = llesel* =1 forall x,§ €R,

we arrive at the upper bound

d A=A+ < / / (A — 2d; cosh(27) — 2d3 cosh(27z)) , d€ da .
RQ

321



> (A=) / / A — 2d, cosh(2m€) — 2dy cosh(27x)) , d dx.
RQ

g1

To investigate the behaviour of the integral on the right-hand side as
A — 00, we first note that

Z()\ — )y <4 /OO /00 (A — 2d; cosh(27€) — 2d COSh(QWZE))_|_ dé dx
o Jo

721
S 4/0 A ()\ — d1627TS — dg 627?58)_{_ df d:v,

where we used that 2coshxz > e* for z > 0.

Changing the variables u; = d;€?™¢, uy = d2e?™ we arrive at

1 o oo )\ . .
Z()‘ —Aj)+ < —2/ / A —uz)y dug duy
T dq do U1U9

721
A— dQ A— Ui )\ U/l _u2
— d’UQ du1 .
do

Uuiuz




A—d A—Uu
2 YAX—u1 —u
d (A=) < / L2 dus duy .
do

uiu
j>1 H

Here A > dy + d3 since A > 2 and di,ds < 1/2. Now we immediately obtain

A—ds  pA—uq A — U — Uy l—da /XA pl—wv; 1 — vy — vg
dUQ du1 = A d?)g d’Ul
d1 Ui u2 di /) da /X V1V2

= Alog® A+ O(Alog \)

as A — 00, so that

1
S =A< 2L 60,

: T2
Jj=>1



e Deriving a Lower Bound.

To obtain a lower bound, we use a different argument. Since ||¢);]|2 = H@Z] |2 =1
we start from the identity

S O=A)e = A=) [ 1050 deds

721 721

and observe that, if as before e, ¢(y) = e*™¥4g(x — y), we have

7., €) = / i) ene@) dy = (W, eac).

This implies

S O=A)e = [ A=) en ) e dla

j=1 j=1

= //]R2 > A= X))+ (e )0, €ae) déda.

g1




Denoting by dE,, the projection-valued spectral measure for H on [2,00), we
conclude that

S A=A = [ [ SO0 (e ) e dede

j>1 j>1
— // / (A=) (dE ez ¢, ez.¢)dldT .
R2 J2

Since by the spectral theorem

oo
/2 (AEpeocrene) = (o o) = gl = 1.

we can apply Jensen’s inequality with the convex function z — (A — z), and
obtain the lower bound

}:Q—Aﬂ+2/ﬁpCM1LmuMEﬁm@%@)+%®%

i>1



Computing
/ p(dE, ez¢,eq¢)déde.
2

It follows from the spectral theorem that

/2 p(dE,epe,epe) = (Hez g, eq.¢)
= (U+U e, ae) + (V+V Newe, )

The two terms on the right-hand side can be computed explicitly.
We first note that

glz —y+i) = (1/m) /4 e@=vED)" = o1/2¢(z — y)eF @97

whence
(U4 U Newe,ae) = / (e 2™ g(z —y+1i)+ e gz —y—1i))g(z — y) dy
— ¢l/2 (e_%g/ g(z)Qe_iZ dz + e2™¢ / g(z)QeiZ dz)
1
= —2cosh(27¢) .

di



For the second term, ((V + V™ 1Ye, ¢, e.¢), we get

(V+V Nepe,ere) = /_OO 2 cosh(27my)g(x — y)? dy
— /_OO 2 cosh (27 (z — y)) cosh(27y)g(z — y)° dy

> 1
+ / 2sinh (27 (z — y)) sinh(27by)g(z — y)° dy = d—2 cosh(27x) .

oo 2
Therefore we finally arrive at

// ()\ — — cosh(27¢) — 2 Cosh(27rx)) dédx
R2 do

_|_

= 4/0 /0 ()\ - cosh(27§) — - cosh(27ra:)) . dédz .

1 2



Note that 2coshx < 2¢e” for £ > 0 and thus
> OO 2 2mw€ 2 2mx
d A=Ay >4 Y d¢dx .
i>1 0 /0 d1 > +

The integral on the right-hand side is computed in the same way as previously.
The only difference is that the numbers dy, d2 have been replaced by 2/d1,2/ds.
These coefficients have no influence on the leading term for large A as long as
A >2/dy 4+ 2/ds, and we conclude

1
> (A=At = SAlog? A+ O(AlogA) as A — oo.
j>1 "
Thus we have the following result

Theorem. For the Riesz mean of the eigenvalues of the operator H we have

1
> (A=) = 5 Alog? A+ O(AlogA) as A — oc.

: 2
j=>1

Corollary. For the number N(A\) = #{j € N: X, < A} of eigenvalues of the
operator H below A we have

N ()
lim (2 ) — 72,
A— 00 log A



e Open Problems.
1. The symbol of the operator H equals

— 1
2cosh& 4 2coshx = 2 Z m(f% + 2%™).
n=0 ’

Therefore using that the first eigenvalue of the Harmonic oscillator equals 1 we
have A1 (H) > 3. Find \;.

2. Estimate from below the first eigenvalue of the operator

Hn _ (_1)nD2n 4 x2n.



Thank you



