Spectral Theory and its Applications -
- Spectral and Functional Inequalities

A. Laptev

Imperial College London

MCQM22 Como, June 13-18, 2022



Lecture 5



e Calogero inequality.

Let V >0, V € L¥?(R%), and let H be a self-adjoint Schrédinger operator in
L?(R%)
Hu=—-Au—Vu.

The operator H might have finite or infinite number of negative eigenvalues Ag.
Denote by N(H) the number of such eigenvalues

N(H) = #{k: \, < 0}.

Then if d > 3 the CLR inequality provides an upper bound

N(H)gcd/ V42(z) dx.
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It is well known that d = 1 or 2 the latter inequality does not hold for arbitrary
V € LY2(RY).

If d = 1 there is a classical Calogero inequality:

Let H be a Schrodinger operator in L#(R.), Ry = (0,00), with the Dirichlet
boundary condition

Hu = —u" —Vu, where u(0)=0.

Theorem. (Calogero 1965)

Assume that V > 0, V € L'/2(R,), is monotonically decaying function. Then
for the number N(H) of the negative eigenvalues for the operator H we have

N(H) < L VV(r)dr = L (&% — V(2))? dédu.
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Remarks.

1. Note that if w € H} (R, ) we have Hardy’s inequality

o) 1 oo 2
/ /' (z)|* de > = / u(z) dx.
0 4 Jo
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2. The multi-dimensional Hardy’s inequality

—9 2 2
/ Vul* de > (d-2) / %dw
R 4 Ra |2

makes sense for d > 3.

This leads us to the fact that the existence of semiclassical CLR inequalities are
connected on Hardy type inequalities.



One of the ideas was to simply add a Hardy term (AL ’00).

Let us consider a Schrodinger operator in L?(RR?)

where 3 >0,V >0,V € L}(R?) and V(2) = V(|z|). Then
RQ
where

Cg = (4m)~! Sup{,u_l/Z-#{nEZ: nz—l—ﬁ—,u<0}}.
pu>0

Remark. The constant C\, is sharp and C, — o0 as a — 0.



Proof. Introducing polar coordinates x = (r,6) and changing variables r = ¢!

we reduce the problem to the study of number of negative eigenvalues for the
operator in L*(R x St)

Let {—ux} be negative eigenvalues of the operator d?/dt?* — e?' V(et). Then

N(Hg) =#{kn:n’ —pmpe+8<0t=>_ Y 1

k neZ:n?+<up

< 4rCjp Z Vit < Cj / e V(e dt = Cg / V(x)dx.
. R
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e Magnetic 2D Schrodinger operators.

There is a magnetic 2D Hardy’s inequality obtained in L-Weidl ’99. Namely if
we have a magnetic Laplacian with Aharonov-Bohm magnetic field

—I2 X1
|27 2|2

A= (A1, A) =a ( ) (z1,22) € R,

Then, see Lecture 1,

2
(iV + A)u|* do Zwa/ Mdm,

|
R2 R2 |$|2

where 1, = mingez |a — k|%.

Denoting by Hy—V = (iV+A)? -V with a potential V- € L*(R.,r dr; L>°(S'))
and using the latter Hardy inequality Balinsky-Evans-Lewis '01 obtained

N(HA—V) SCQ/ HV(’I“,)HLoo(Sl)TdT
Ry

Remark. During the last two decades there were a number of deep results
regarding CLR inequalities for 2D Schrodinger operators in the paper Solomyak,
L-Netrusov, AL-Solomyak, Grigoryan-Nadirashvilli and E.Shargorodsky.



One of our main results can be seen as a generalisation of the Calogero bound
to dimension d = 2. Let

R?'_ = {QZ = (331,562) c RQ; x1 >0, 29 € R}

Theorem. Let V € L'(R%), V > 0, be non-increasing in 1,
V(xi,20) > V(2,29) for x1 < af.
Then the number of negative eigenvalues of the operator
Hy—V=-A-V

with Dirichlet boundary condition on z; = 0 satisfies the inequality

N(Hy—-V)<C / V(x)dex,
3

where the constant C' < 4.31 is independent of V.



One of the main ingredients of the proof is a Calogero inequality with an
operator-valued potential.

Let H be a separable Hilbert space and let V(t), t > 0, be an operator-valued
function (potential), whose values are compact, non-negative self-adjoint oper-
ators in H.

Let 8 > 0 and consider the operator Ag in L?(R;H) with the Dirichlet bound-
ary conditions whose quadratic form is

d? 15
AgU(t) = —@U(t)—l—t—QU(t)—V(t) Ul(t), U(0) =0.

We say that the family of operators V(t) is non-increasing if V(t) > V(s) for
0 <t < s in the usual sense of quadratic forms. Namely, for any fixed vector

UeH
VU, U)y > (V(s)U,U)y, 0<t<s,

where (-, )y is the scalar product in H.
Denote by {u,(t)} the eigenvalues of the self-adjoint operator V(t).



Proposition 1. Let the operator-valued potential V > 0 is non-increasing.
Then the number of the negative eigenvalues N (Ag) of the operator Ag satisfies

the inequality
N (Ap) <05/ (Z*/“n >dt

where Cg is a constant independent of V.

Proof. We divide the semi-axis R into intervals (2%,25+t1), k € Z. Denote
by Ag the operator Ag restricted to the interval (2% 25T1) with Neumann
boundary conditions. Then

N(Ag) <> N(Ap).

kecZ

Since V is monotone we have V(2%) > V(t), t € (2F,2*T1) and therefore



By using scaling t = 2¥s we reduce the problem on each of the intervals (2%, 2*+1)
to the interval (1,2) and obtain

Vet S (-5 D )

kEZ
B 2k yyrok
<§ N (——d82+——2 V(2 )).

keZ

We now consider the operator with constant coefficients

2

2k vy (ok
P + 6/4 — 2% V(27)

in the eigen-basis of the operator V(2%). Denoting by u,(2%) the eigenvalues of
the operator V(2%) we find

N(Ag) <> (#{m > 0: m*n*/4+ B/4 — 2°% 1, (2%) < 0})

gCsz ‘ /un(%) g(j/ <Z \/un(t)> dt
k.n R+ \ n

Here we have used again the monotonicity of the eigenvalues of V' (¢).



In order to prove our statement we consider the operator in L*(R2)
H=Hy—-V=-A-V

with Dirichlet boundary condition on ;7 = 0 and monotonically decaying wrt
xr1 potential.
It can be written as

T 79 T W(xl)a
dx?

where
d2
W(zr1) = 5 + V(z1,72)

2
dzs

is an operator valued potential in L*(R).



Since functions from the domain of the operator H satisfy the Dirichlet bound-
ary conditions at 1 = 0 we use the 1D Hardy inequality and obtain

d? 1a* 148 14 1
dr?  2dx? 2dx? = 2dx?  8a?

and reduce the problem to the study of the operator

1 d* 11
—— = + =— — W(x1).
2dw%+8x% (1)

Due to the variational principle we have

N (—1 LA W(x1)> <N (-1 4yl W(x1)+) |

2 de{  8ua? 2 dr{  8a?

The operator W (x1)y has discrete spectrum whose eigenvalues p,,(x1) satisfy
the well-known sharp Lieb-Thirring inequalities

Z\/,un(:cl) < % /V(ml,azg)dacg.

Applying Proposition 1 we finally obtain

N(H) S C/ V(£U1,$2) d$1d$2.

2
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e Magnetic 2D Schrodinger operators with non-increasing potentials.

Let us again consider the AB vector potential

—X2 X1
)27 ]2

A:(Al,Ag):a( > (21, x2) € R?

and let Hy —V = (iV+A)?-V.
We also have the following;:

Theorem. Let V € L}(R?),V > 0 be a potential that is non-increasing along
any ray from the origin, i.e. in polar coordinates V (r, ) > V (', @) for r < r'. If
a ¢ 7 then the number of negative eigenvalues of the operator H4 — V satisfies
the inequality
N(Hy,—-V) < C, V(z)dx.
R2

where the constant C,, is independent of V.

As before we need an appropriate Hardy inequality, a 1D Calogero inequality
for operator-valued potentials, and Lieb-Thirring inequalities in this case for
operators on S'.



Let A = « (Ejg : éﬁ), a € R\ Z and consider the Aharonov-Bohm magnetic

quadratic form whose respective operator is H4 in polar coordinates

(o’e) . 2
\(z’VJrA)u\Qda;:/ / <|8Tu\2—|— 10pu+ a)ul )rdgpdr.
R2 0 S

r

Splitting Ha = Ha /2 + H 4 /2, and using magnetic Hardy inequality we reduce
the problem to the study the Schrodinger operator

1 Vo 1
Hoi—V>-Ho+22 —_ _y

Eventully we reduce the problem

11d d  ta 1
———r
2 rdr dr 2 |z|?

o W(T)a

where

W(r) = == (0 +a)* =2V (r,9))

r



Proposition 2. Let us consider the magnetic operator on L?(S!)
ho —v = (i6¢+a)2—v.

Then for the negative eigenvalues —u,, we have

Z\//TnSOafglv(sO)dsa.

Our proof follows the proof of T.Weidl 96 who obtained Lieb—Thirring inequal-
ity for the 1/2 moments of a Schrodinger operator on R.

The main idea of the proof of Weidl is to use Neumann bracketing whereby R
is partitioned into disjoint intervals that each support at most one eigenvalue.
Importantly the length of each interval (compared to the L!-norm of the po-
tential on the interval) can be chosen to be uniformly bounded from below. To
achieve the latter on the bounded set (—m,7) we will use that for a ¢ Z the
operator h does not have any zero-modes and that h, — v does not admit any

negative eigenvalues if
/ v(ep) dep

is small. The desired partition can then be constructed with multiplicity 2.



e Proof of the classical Calogero inequality.

Theorem. (Calogero 1965)

Assume that V > 0 is monotonically decaying function such that V € LY/2(R.).
Then for the number N(H) of the negative eigenvalues for the operator H =

d? /dz? — V we have
2 oo
N(H)S—/ V'V (x)de.
T Jo

Proof. It is enough to prove the theorem for smooth V'’s.
Let u be the solution of the equation on R

—u”" —=Vu=0 u0)=0 '(0)=1.

Assuming that u'(0) # 0 we introduce g satisfying the equation

tan(g(x)) = V1/2(2) “2).

u' ()

Due to Sturm’s oscillating theorem zeros of u that we denote by {zx} are simple
as well as zeros of u’ that we denote by {px}. We also have z; < p; and

Im tan(g)(zx, px) = (0, 00)

and thus g(zx) = 0 and g(pg) = 7/2.



Derivating both sides of the equation tan(g(z)) = V1/?(z) 5,((?) and using that
u”" = —Vu we find

1
cos?(g)

g = %V’V—l/ZE + V12 L3 (3)2

u’ u’
1 N 1V’ .
cos?(g) 2V

1 /
= §VV tan(g) + V'1/2 (1 + tan®(g)) = V2

This implies

1 /
g =V"?4 5% tan(g) cos?(g) = V2 + = — sin(2g).



Since g(zx) = 0 and g(px) = /2 and since V is decaying (and thus V’ < 0)

/
% sin(2g) < 0.

Finally we obtain
1/2 o 1V
/ V2 de > / (V1/2 + —— tan(g) COSQ(g)) dx
R, o 2V

- [ g @ e = gt

2k

Pk T

2k

where we used that the number of the negative eigenvalues N (V') coincide with

the number of intervals (zx, px).
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