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e Schrodinger operators on |0, c0) with Robin boundary conditions.
Consider the equation with V"> 0

" = Vi ==X, '(0) = py(0).

Theorem. (P.Exner, AL, M.Usman ’14)
We obtain the inequality
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Remark. Let = 0 (Neumann problem). Then

- >\3/2 4 Z A2 < 136 V2 dae.

Remark. Let V =0 and pu < 0. Then

—" ==X, (0) = pp(0).

The Robin boundary condition creates only one eigenfunction with negative
eigenvalue

(z) = e VM, where —VA=p.
The inequality () becomes equality
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)\3/2 = )\3/2 — _ )\3/2.
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Recently Lukas Schimmer has obtained a different inequality by using the so-
called the double commutation method:

Theorem. For any V € L?*(R;), V > 0, the negative eigenvalues —\; of
—d?/dx* — V with Robin boundary condition ¢’(0) — oo (0) = 0 satisfy
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0j =051+
with ¢; denoting the eigenfunction to A;.
Corollary.

For any V € L?(Ry), V > 0, the negative eigenvalues —\; of —d?/dz? —V with
Dirichlet boundary condition ¢(0) = 0 satisfy

3 [ 3« ¢ (0)]2
A2 < 2 V2de — 2 J .
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e The sum of the square roots.

Theorem. (D.Hundertmark, E.Lieb and L.Thomas)
Let d = 1 and v = 1/2. Then the negative eigenvalues {—\;} of the operator

H = —j—; — V, satisty

Z\/TkS%/Verx-
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In order to prove this statement we need to prove some auxiliary results.
e Properties of self-adjoint compact operators.
Denote by u, = u,(A) eigenvalues of a compact, self-adjoint operator A.

Proposition. Let A be a compact, self-adjoint operator. Then for any NV € N
the sum of its highest eigenvalues

N

IA[lln = [ (A)]

n=1

is a norm. In particular, if A and B are compact, self-adjoint operators, then
for any N we have

1A+ Bll|~ < [[[Alllx + [ B~



e Birman—Schwinger principle.

Let —\ be the eigenvalue of —A — V., V > 0. Then there is 9 s.t.

—AY —Vip = -p = AP+ ) =Vp = = (=A+ )"V

e A modified Birman—Schwinger operator.

Let 0 < W € L?(R). For € > 0 we consider the operator
d2 -
L.:=2W (—— + 52> W, in L(R).

dx?

Note that £. > 0 and

dx?

d2 -1
% (—— . 52) — o Frg. T,

where F denote the Fourier transform and where
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The function g. is a probability density, that is,

/ge(g)dgz 1 Ve>0.
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The operator £, > 0 and

Lemma. For any € > 0

Tr£€:/W2da:.
R

Proof. Let Q is the integral operator in L?(R) with integral kernel

e€(@=y)  g¢
Qz,y) \/_/ (€2 +e2)1/2 27 W{(y).
Clearly
L. = Q*Q
Therefore

W (y)? dedy

vQQ= ([ 1Q.y)P dedy=2 ) dg |
= 2¢
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e A property of the operator L..

Let us denote by U(&) the unitary in L*(R) operator of multiplication by the
function e %7 .

Proposition. Let 0 < ¢’ < e. Then

[ = / U*(€) Lo U (€) goor (€) dE.



Proof. The operator L. = 2rW F*g. F W is an integral operator with integral
kernel

Lolay) = [ W@ W) g.6) de

Note that
% = (Fgo)(@) = 7.

Therefore for 0 < €/ < € we have
09 = FRO) = F (@ 57) (€)= [ 906 = gemcln)dn.

This implies that the kernel of £. can be written as

oo y) = /W eI (y) g (€) de
/ / M= T () ! EDED T (y) g (6 = ) g (n) dn dE
_ /R /R M) T (2) €)W (y) gor (p)ge—er (m) dpeln

B / """V Lo/ (2,y) ge—er (n) dn.
R



e Monotonicity lemma.

Let pn, = pn(L:) be eigenvalues of L. arranged in non-increasing order and
repeated according to multiplicities.

Lemma. Let 0 < &/ <e. Then for any N € N we have

LN < M1 Ler ]

that is
N N
Z pn(Le) < Z pn(Ler).
n=1 n=1
Proof. Using the fact that ||| - ||| is a norm we find
il = || [ 0@ 06 0o |
R N

< [ U Le UI|IN ge—er (§) d§ = |[|Ler|[| -



e Proofof Y VA, <3 [ Vidz.

By the variational principle it suffices to prove the theorem for V' > 0. In that
case, we set W =V € L%(R).

Consider the Birman—Schwinger operator

1 2\
2—€£€:W (—@4—8) W, e>0.
Let pu,(L:) be the n’s eigenvalue of £. and let —\, = —\,(H) be the n’s

negative eigenvalue of H = —d?/dz* — V.
According to the Birman—Schwinger principle

1
1:2\/E,un (Em), vn. (*)

We now show that

N N
szﬁ Zﬂn (ﬁm), VN.
n=1 n=1



If N = 1 this follows from (x). Let N = 2, then again from (x) and also by
applying Corollary we have

2(v/ M1+ vV 2) < (L x0) + 12 (£g) <mn(Lg) + 12 (L) -

Let N = 3. Then

2(v/ M+ VA2 +VAs) < (Lan) + 2 (£yxg) + s (£ 55)
< w1 (E\/A—Q) + o (L) + 3 (Lyg)
< (Lyx;) + 1 (Lyxg) + s (Lyx;) -

Repeating this N-times we obtain the claimed inequality

N N
2> VA <) i (Lyxy), VN
n=1 n=1

We conclude the proot of the theorem by computing the trace of L

dx

22\/7<Tr£\/— /L‘,\/—

= [ [ W@ w) a0

The proof is complete.




e L-Th inequality for v = 1.

Let {t;}7_, be in orthonormal system of function in L*(R) and let

p@f)=z§£j¢€(x)

Theorem. (Eden and Foias inequality)

n

[ p@ds= [ (X ws@F) de <3 [ 1 @) do

j=1 j=1



Proof. We first derive a so-called Agmon inequality

1/2 1/2
|9l e < |9l ¥6 191

Indeed
1 e @)
vl =g| [ wra— [l < [l < el

Let now & = (£1,&s,...,&,) € R™. Then by Agmon-Kolmogorov inequality

S v < (3 6aw) (3 Ga o)
Jj=1 j,k=1

J,k=1

1/4

n

= (Z‘SJZ)M( En: fj&(w;,w,;>)”4.
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So we have proved

|i§j¢j<x>|s(ij )" (Zﬁjsk W)

If we set &; = 1;(x) then the latter inequality becomes

=S @ < (3 e w)

7,k=1

Thus

Integrating both sides we arrive at

n

/ (S lwi@l) de <3 / )2 da

g=1

and obtain the proof.



e Spectrum of Schrodinger operators.

Let {v; }?‘;1 be the orthonormal system of eigenfunctions corresponding to the
negative eigenvalues of the Schrodinger operator

d2
 dx?

Yj =V = =y,

where we assume that V' > 0. Then by using the latter result and Holder’s
inequality we obtain

[ (s e ([ voras)” (L) as)

Denote



Then the latter inequality can be written as
2/3
X3 - (/V3/2d:1:> X<-Y )
J

1/3
Maximizing the left hand side we find X = = ( [V3/2 d:r;> . This implies

V3
i/vi”/?daz—i/VS/de:—i/VS/Qdaz< =) A
33 V3 33 o
and we finally obtain 3. \; < 3—\2/3 [V3/2dz.

Until recently it was the best known constant in Lieb-Thirring’s inequality for
v = 1. It was improved by R.L. Frank, D. Hundertmark, M. Jex, P.T. Nam in
any dimension.
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