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Lecture 3



e Comparing Dirichlet and Neumann eigenvalues.

Let Q C R? be an open set of finite measure and let —AL and —AY be the
Dirichlet and the Neumann Laplacians, respectively. As before we assume that
H'(Q) is compactly embedded into L?(2), which implies that the spectrum of
both operators are discrete and accumulate at infinity.

The min-max principle implies

pe(—A5) < M(-A35),  VkeN.

Remark. If d =1 and Q = (0, 7) then obviously

pei1(—AY) < Ae(—=AF), Vk €N,

Theorem. (N.Filonov '04) If d > 2, then

i1 (—AY) < M(—Ag), Vk € N.



This theorem settles a question of Payne from 1955.
x  Polya (1952) proved it for k = 1.

* Payne (1955) obtained for two-dimensional convex domains

pea2(—AG) < M(=AF),  VkeN.

+ Levine and Weinberger (1986) extended Payne’s method to any dimension d
and obtained

e (A <N (=AL),  VkeN, 1<r<d

if certain conditions (depending on 7) on the principal curvatures of € are
satisfied.

x Friedlander (1991) obtained for bounded domains with C!-boundaries that

per1(—A) < A(-Ag),  VkeN.



As a first step in the proof we note that a non-trivial eigenfunction of the
Neumann Laplacian cannot satisfy Dirichlet boundary conditions.

Lemma. For any u > 0 we have

ker (—Ag — p) N Hy(Q) = {0}.

Proof. 1 leave it as an exercise.



Proof of Theorem.

Let L = P(_ s ,1L*(2), where P is the spectral measure of the Dirichlet Lapla-
cian. Then L C H;(Q) and

dim L = N(u, —A§) + dimker (—A§ — i) < o0.

Moreover,

/ Vu|? dz §,u/ lu|*dx, YuclL. (%)
Q Q

By Lemma ker (—AY — 11) has only a trivial intersection with H} () and there-
fore also with L. Hence the sum

F=1L+ker(—AY — p)
is direct and finite-dimensional.

On the other hand, the linear span of the functions e™*|g, w € R? satisfying
lw| = \/p is infinite-dimensional. Thus, there is at least one vector wy € R“
with |wg| = /it such that "% ¢ F'. For the direct sum

G = L +ker (—AY — ) 4 span {e™“0*}
we have G € H'(Q) and

dim G = dim L + dim ker (A — p) + 1.



Let us show that inequality (x) remains true for all v € G. Indeed, for any
u=ur, +v-+ce™* ur € L, v € ker (—Ag — 1), ¢ € C, we have

/Q Vu|* de = /Q Vur, + Vo + Ve |2 de = I, + L.
Here
I = /Q (IVur|* + |Vv|? + |Vee™o?|?) da
< u /Q (Jur]® + [v]? + [ce™°*|?) dx

and

I, = 2Re / (VU - V(up + cetwor) 4 cVe'or . VuL) dx
Q



Since the eigenfunction v belongs to the operator domain of —AJ and uy +ce’o*

belongs to the form domain H!(2) of —A] and since uy € Hj (), we have

I = 2Re / ((—Agv) (ur + cewor) — C(Aewox)@) dz
Q

= 21 Re / <v(uL + ceiwot) | ¢!t ﬁ) dz.
Q
Thus
/ Vul* dz < p / (Jur]® + [v]? + |ce™°*|?) dz + I
Q Q
= 1 / lup, + v+ ce™° | du.
Q

and we obtain
N(u,—Ay) > dim G = N(pu, —AG) + dimker (—Ag — p) + 1.

If now we let now p = A\p we conclude that puri1 < Ag.



e Schrodinger operator.

Let us define —A — V as a self-adjoint operator in L?(R?) using the theory of
quadratic forms

(Hu,u) = /Rd(|Vu|2 — V |ul?) de.

Proposition. Let V € L (R?) be a real function on R? and assume that there

loc

are constants 8 < 1 and C < oo such that

/ V+|u|2dx§9/ (IVul® + V_|ul?) dm+0/ u|? dz
R4 R4 R4
vu € HY(RY) N L*(RY, V_dzx).

Then the quadratic form

/ (|Vu|2 — V|u|2) dx
Rd

with domain H!(R?)NL2?(R%, V_dz) is closed and lower-semibounded in L?(R%)
and C§°(R?) is a form core.



Corollary. Let V be as in Proposition. Then there is a unique, lower semi-
bounded and self-adjoint operator H in L?(R%) whose

domH c H*(R*) N L*(R%, V_dx)

and for all © € domH and v € H'(R?) N L3(R%, V_dx)
/ (Vu - Vo —Vuv) de = (Hu,v).
R4

Its domain is given by
domH = {u € H'(R*) N L*(R%, V_dx): —Au—Vu € L*(RY}.

For v € domH we have
Hu = —Au—V u.



Proposition. Let V be a real-valued function on R¢ such that V_ € L} (R%)

and V. € L°°(R%) + L?(R%), where

(p=1 1fd=1
p>1 v fd =2
p=d/2 ifd>3.

'\

Then for any 6 > 0 there is C > 0 such that for any u € H(RY)

/ V+\u]2da:§9/ (IVul* + V_|u|?) dz+C | |ul*dz.
R4 R4 Rd



e CLR and Lieb-Thirring inequalities

Consider a 1D Schrodinger operator

: 2
H:—@—V(ﬂf), in L (R),

where V' — 0 as |z| — oo and V > 0. and let {—\x} be negative eigenvalues of
H.
Spectrum:

D PR W - AN

Z A7 = Z A (VT < gjr’;d //(|§’2—V(:B))i drd§ = L%d/V(x)rrd/2 dx.

This inequality holds true ford=1,v>1/2;d=2,v>0;d > 3,~v > 0.

Compare with Weyl’s asymptotic formula:

SNV oo L [(@Va) 2 dn = (2)7¢ [ [(€ ~ av)? deas,
J

which implies L ; < Ly 4.



Applications.

e Weyl’s asymptotics.

Stability of matter.
Study of properties of continuous spectrum of Schrodinger operators.
Estimate of dimensions of attractors in theory of Navier-Stokes equations.

Bounds on the maximum ionization of atoms.



Remark.

Ifin H=-A+YV,

—A Q
Viz) =  BESS Qe R4,
+o0o, x &€,

then the spectrum of H coincides with the spectrum of the Dirichlet Laplacian
in ().

Therefore Pélya inequalities are special cases of L-Th inequalities.



e CLR and Lieb-Thirring inequalities.

Theorem. Let v > 1/2ifd=1,~v>0if d > 2 and let 0 < V € LYT¥2(R9),
Then the negative eigenvalues {—\x} of the operator —A — V' satisfy

Y N < Lyg / Vtd/2 g,
k Re

Sharp constant were obtained in the following cases:

Theorem. It is known that L;,5; = 1/2 (Lfl/Q,1 =1/4) and
Lyg=1LY,ify>3/2,d>1.
In other cases the sharp constants are unknown.

E.Lieb, W.Thirring, M.Aizenmann, D.Hundertmark, L. Thomas, AL & T.Weidl.



e Darboux transform v = 3/2.

Let (—A1,%1) be the lowest eigenvalue and its respective eigenfunction

d2
Hipr = —W?ﬁl — V()1 = -1
x
It is known that ¢, # 0 and we can choose 1 > 0.
Denote )
/ 1/ /
=1 f{=—1—(ﬁ).
(] ¥ (G
Therefore .
itfi=—"-=Mh-V
Y1
Let us introduce
d d
= — — & 1= —— — f1.
Q1= fi Qi=——~Fh



Then

d d d?
Q0= (~g ) (1) =g+ i+

d2

The discrete spectrum o4(Q7Q1) of the operator Q1 coincides with

In particular,

where

and also

0q(Q1Q1) = {0, =A2 + A1, —=A3 + Aq, ...}

QiQ19Y1 =0,

0 (2) e_mx, T — 400,
€T)
! emx, r — —OQ.

fiw) = Y@ {—m, r — +00,

1 () VA, 2 — —oo.



Commuting ()7 and ()1 we obtain

d d d?
Q1Q7 = (@ —f1> (—@ —f1) R —f{+f12

The operators Q7@)1 and ()17 have the same non-zero spectrum.

Moreover, 0 € o(Q1Q7), indeed, assume that there is ¢ € L*(R) s.t.

Q1Y =0 = [Q¢]=0 =
—¢ —fip=0 = (fi~—V A,z +00) =
wwemx, r — +o0.

Therefore v & L*(R).



Conclusion:

ogq(H) ={—=X1,— A2, —A3,...}
and

oga(H —2f1) ={=X2,—A3,... }.
Denote now Vi =V + 2f1, H1 =H — 2f].

Considering the class of potentials with the finite number of eigenvalues and
repeating this process, we obtain a non-negative Schrodinger operator with the

potential
V==V —2ff = 2fy— - —2f,

where
f7{l,—|_f7’2b = An — Vi

and

oa(H—=2f1 =2fs — - =2f,) = 0.



Finally we have

0< [ Wy 2f)Pde = [ [VEL 45V + )] do
R R

o0 4 o0
= [V an e =) do = [ VEde g -0
2 3/2 8 3/2 2 16 3/2
R 3 R 3
16 — 3/2
=...= [ Vide — =) \/°.
/R P

Theorem. (Benguria and Loss '00)

Let H = —j—; —V,in L?(R), where V € L?(R), V > 0. Then for the negative
eigenvalues {\;} of the operator H we have

Zﬁ/?gi/V?daz.
16 Jq

J

Remark. The above inequality holds for H = —% —V in L*(R,) with Dirichlet
boundary conditions at zero.



e Sharp multidimensional Lieb-Thirring inequalities, v = 3/2.

The main argument is based on a Lieb-Thirring inequality for Schrodinger op-
erators with matrix-valued potentials.

Theorem. (AL & T.Weidl)
Let M > 0 be a Hermitian m x m matrix-function and let H = —d?/dx* — M
in L?(R). Then
3
}}WWﬂgE/ﬁM%wm

n

Using this result we prove the following we obtain

Theorem. (AL & T.Weidl)
Let V € LY(R%) with v > 3/2. Then for the negative eigenvalues of the
Schrodinger operator

H=-A-V

we have

d oI <Ly, / VItd2(g) da.

R4



For the proof we use the so-called lifting argument with respect to dimension.
Let for simplicity d =2, V € C§°(R?), V > 0, = (x1,22) and v = 3/2. Then

H=-A-V=-09 (82 V).

11 22

~N"~

H(z1)

7

Spectrum o(H) of H(z1) has a finite number of positive eigenvalues 1 (z1).
Thus H, (z1) has a finite rank. Let, for instance, v = 3/2

SN H) < SN0, - L
J J

3
< 16 TI'H ($1)d$1 < iLgl/‘/ V3/2+1

cl
L3/2 2
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