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Lecture 2



e Pdlya’s conjecture.

Let Q C R? be a domain of finite measure and let —A% be the Dirichlet Lapla-
cian in L?(Q) defined via it quadratic form

/ Vu|? de, u € Hy (Q).
Q

The famous conjecture of Pélya (’54) states that the number of eigenvalues A
of —A§ below X of the Dirichlet Laplacian satisfy

N\, —AS) = #{k: Ny <A} < (27)7¢ /Q/|§|2<>\ dédx

= (27r)_d\(2|)\d/2/ d¢ = L§ ;| X2,

£12<1

where L(C)l,d = (2m) "4 By| = (27) ¢ el<1 98-

Equivalently
2/d
(277)d 2/d
A > 2/ k=1.2.....

v = (mm@d\ ’ i




e Weyl’s asymptotics.

The conjecture was motivated by the Weyl’s asymptotic formula that stated
N\, —Af) = Lgl,d A210| 4+ 0(AY?), as A — oo,

“phase volume” type asymptotics.

In order to prove it Weyl used a version of the max-min principle, namely
Dirichlet-Neumann bracketing for cubes

If QO C R? for each square with side @ we find that the eigenvalues are equal to
(A2 (a) =7%a"2(n?+m?): n,m=1,2,3,...} for the Dirichlet problem
and
{u (a) = 2a"2(n?*+m?): n,m =0,1,2,3,...} for the Neumann problem.

Counting

#{(n,m): \pp(a) <A} and  #{(n,m) : i, (a) <A},

summing them up and letting a — 0 we proof the result.



Remark.

Note that the Dirichlet-Neumann bracketing can be applied only to domains
with relatively smooth boundaries. One can extend Weyl’'s asymptotics to
arbitrary domains of finite measure only if one has a uniform estimated for
N(\, —AL) with some constant C

N, —Af) < C QA2

e Weyl’s conjecture.

In H.Weyl ("1911) also conjectured that
N(A) = L, A2|Q] — cq1 A D/219Q + o(A41/2),
where cy_1 > 0 is a standard term depending only on dimension d.

Under certain conditions on classical billiards in T*€ V.Ivrii (’80) proved this
result.



e Lasier question.

Is there a constant C > 1 such that

N(X) < CLg, |2 2

x This inequality was proved for bounded domains by .
Birman & Solomyak (’70) and Ciesielski (’70) with some constant C' > 1.

~

x  For domains of finite measure and with some C' > 1 it was proved by
G.Rosenblum (’71) and E.Lieb (’80).

* The best known constant is due to Li &Yau (’83).



e The Berezin—Li—Yau inequalities.

Theorem. (AL '93) Let Q C R? be an open set of finite measure and A > 0.
Then

D A=) <@m)HQ [ (A= [€7)4dE

k R

— A2 | (27) / (1 [, de.

Rd

Proof. Let © C R? be an open set of finite measure. Then the spectrum of
—APL is discrete. We denote by A\, the non-decreasing sequence of eigenvalues
(counting with multiplicities) and let ¢ be an associated othonormal system
of Dirichlet eigenfunctions. Note that these eigenfunctions can be continued by
zero outside of € to H'-functions on R¢.

For any A > 0 we have

S0 M =30 ([ e - 1w dx)+

k k

= @2m)=" | (A=) [@elPdg) < @m)7 [ (A-EP) Pl * dé.
;( /Rd Pk >+ /Rd + ; Pk

Clearly
— —1iT 2 —iT
DB =D [k e ) 2| = lle™ 8 * = 19,
k k

The proof is complete.



Corollary. Let Q C R be an open set of finite measure. Then for all A > 0,
we have

9\ /2
N\, —Af) < (1 + —) Lg{d

Q| \%/2,
~ |

Proof. Consider

Proof.

X (0,) (f) \\\\‘\\

Here p = 7 — A. Then by the BLY inequality we have

1 1

_AD - — 1Ol (27) ¢ — €1  d

NOAR) € 23 0= A < 91 en [  [67) d
771—|—d/2 4 5
=L leren el [ - ). de

Minimising wrt n we find n = A 1-572/ 2 and obtain the proof.




Remark. Nobody knows if there is a constant Cy: 1 < (y < (1 + %)d/ ’ such
that

N(A, —Ag) < Cy L, 19| A2,

Remark. From Ivrii’s asymptotics one can obtain

Tr(—A8 =N =3 (= M)y
k

1
- Ll = L o ().

Some uniform wrt A BLY inequalities with negative remainder terms were ob-
tained in the papers of A.D.Melas; T.Weidl; L.Geisinger, T.Weidl and AL;
L.Geisinger and T.Weidl.



e Kxercises

+ Let Q C R? be a domain of finite measure and let —AY be the Neumann
Laplacian defined via its quadratic form

/ Vul|? de, uwe HY(Q).
Q

For domains with sufficiently ‘good” boundaries the spectrum of —AJ is discrete
and consists of eigenvalues {u}7>; with g1 = 0. It is enough to assume that

H'(Q) is compactly embedded into L?(12),.
Prove Kroger’s inequality ('92) that states

S e = 0] 2m) 7 [ (1= e

k

x Show that the BLY inequality for the Dirichlet Laplacian implies

SO A X2l )t [ (- ) de

k

We usually use the notation

Ly = 2m [ (1= ) de.

for any v > 1.



e Polya’s inequality for tiling domains (Pdlya ’61).

Definition.

An open set Q C R? is called tiling if there are countable families of orthogonal
matrices {R,} and of vectors {a,} such that the sets

Q, ={Ry,z+a,: ze}
satisfy the following two properties
(1) Q,NQy, =0, if n #£m,
(2) |RE\ UQ,| = 0.

Of course, triangles, parallelograms, regular hexagons are examples of tiling
domains but there are more exotic examples.




Theorem. (Polya ’61)
Let Q C R? be a bounded open set which is tiling. Then for any A > 0,

N(\,—AR) < Lgl, [0] A/2

Proof.
For L > 0 we introduce the cube Qr, = (—L/2,L/2)% and the sets

Jo={n:Q,cQr} Q"=int (Unes, ) C QL.
Moreover, by property (2) in the definition of the tiling domain
Jim L™ #J, = Q|71
We have the operator inequalities

AL < —ADL < @pes (AR,



Since all the domains (2,, are congruent to {2, the Laplacians —Agn are unitarily
equivalent to —AJ. Hence

N\, =A8, ) > N (N, @nes, (-A8 ) = #Jr) N\, —AG)

or 5
#JL Ld .

By using scaling x — x/L, note, that —AgL is unitarily equivalent to the
operator —L_QAgl in L?(Q1). Hence

N()\a _Ag) S

N(A\,—AZ, ) =N(L*\,—Ag)).



Let us consider the Dirichlet Laplacian —Agl in L?(Q1). The eigenvalues and
eigenfunctions of this operator are

Y (x) = Hsin (m(z+1/2)n;), v € (—1/2,1/2), and A\, = 7 |n|?,

where n = (n1,na,...,nq) € N® and |n|*> = n? +n3 + -+ + n2.
Then

N =AG ) =#{n: |n]> < \/r*}

1 1
~ — dé = A4/2 / dg
29 Jigp<n/m? (2m)¢ £l<1

= Ad/zLS{d, as A — 00.
This is the “Weyl” asymptotic law for cubes.

We now have as L. — o0

lim L' N\, —AG,) =AY lim (L2A)" %2 N(L* X, -Ag,) = ALY,

L— o0 L— o0
Thus, since limy,_,o, L™¢#J;, = |Q]~! we obtain

Ld N()\v _AQDQL)

N(A7 _Ag) S #JL Ld

— [ )\d/QLSZ’d, as L — oo.



Remark. Obviously the two dimensional disc is not a tiling domain.

Very recently M.Levitin, I.Polterovich and D.A.Sher have proved Pdlya’s con-
jecture for the unit disc. You can find it in:

https://arxiv.org/pdf/2203.07696.pdf



e Pélya’s inequality for product domains.

Theorem. Let d = dy+ds with dy > 2and dy > 1. Let Q7 C R% and Q, C R%
be open sets of finite measure and assume that

N\, —=Af,) < Ly, X120, VA>0.
Then for 2 = Q7 x (29

N\, —AS) < L Y29, VYA>0.

Proof. Let {)\%7 )}, n € N, be the eigenvalues of —Agj. Then the eigenvalues of
—Ag are given by )\7(11) + )\g), (n,m) € N x N.
Then

N\, —AD) = # {(n,m) AW 4@ < )\}
— Z#{n eN: 2D < )\—)\f,,?} - ZN(A-AQ),—A&)

< La 1] DO = )% < L6y, LG, gy [O0] Q2] AR,

where

Ly = Cn [ (- e



It remains to show that
Lo d = Lo dq Ld1/2 ds
Indeed

L§g=@2m)~|{(&, &)« |G +[&]* <1}

em = [ em o 6P < (- laP)s )] d
=L, (27)_d2/ (1 —1&2] )d1/2 déo
Rd2

L cl
T LO dl Ld1/2 ds*
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