Spectral Theory and its Applications -Spectral and Functional Inequalities

A. Laptev

Imperial College London

MCQM22 Como, June 13-18, 2022

Lecture 2

• Pólya's conjecture.

Let $\Omega \subset \mathbb{R}^d$ be a domain of finite measure and let $-\Delta_{\Omega}^D$ be the Dirichlet Laplacian in $L^2(\Omega)$ defined via it quadratic form

$$\int_{\Omega} |\nabla u|^2 \, dx, \qquad u \in H_0^1(\Omega).$$

The famous conjecture of Pólya ('54) states that the number of eigenvalues λ_k of $-\Delta_{\Omega}^D$ below λ of the Dirichlet Laplacian satisfy

$$N(\lambda, -\Delta_{\Omega}^{D}) = \#\{k : \lambda_{k} < \lambda\} \le (2\pi)^{-d} \int_{\Omega} \int_{|\xi|^{2} < \lambda} d\xi dx$$
$$= (2\pi)^{-d} |\Omega| \lambda^{d/2} \int_{|\xi|^{2} < 1} d\xi = L_{0,d}^{cl} |\Omega| \lambda^{d/2}.$$

where $L_{0,d}^{cl} := (2\pi)^{-d} |\mathbb{B}_d| = (2\pi)^{-d} \int_{|\xi| < 1} d\xi$. Equivalently

$$\lambda_k \ge \left(\frac{(2\pi)^d}{|\Omega||\mathbb{B}_d|}\right)^{2/d} k^{2/d}, \qquad k = 1, 2, \dots.$$

• Weyl's asymptotics.

The conjecture was motivated by the Weyl's asymptotic formula that stated

$$N(\lambda, -\Delta_{\Omega}^{D}) = L_{0,d}^{cl} \lambda^{d/2} |\Omega| + o(\lambda^{d/2}), \text{ as } \lambda \to \infty,$$

"phase volume" type asymptotics.

In order to prove it Weyl used a version of the max-min principle, namely Dirichlet-Neumann bracketing for cubes

$$N(\lambda, -\Delta_Q^D) \le N(\lambda, -\Delta_Q) \le N(\lambda, -\Delta_Q^N).$$

If $\Omega \subset R^2$ for each square with side a we find that the eigenvalues are equal to $\{\lambda_{nm}^{\mathbb{D}}(a) = \pi^2 a^{-2}(n^2 + m^2) : n, m = 1, 2, 3, \dots\}$ for the Dirichlet problem and

$$\{\mu_{nm}^{\mathbb{N}}(a) = \pi^2 a^{-2}(n^2 + m^2) : n, m = 0, 1, 2, 3, \dots \}$$
 for the Neumann problem.

Counting

$$\#\{(n,m): \lambda_{nm}^{\mathbb{D}}(a) \le \lambda\} \text{ and } \#\{(n,m): \mu_{nm}^{\mathbb{N}}(a) \le \lambda\},$$

summing them up and letting $a \to 0$ we proof the result.

Remark.

Note that the Dirichlet-Neumann bracketing can be applied only to domains with relatively smooth boundaries. One can extend Weyl's asymptotics to arbitrary domains of finite measure only if one has a uniform estimated for $N(\lambda, -\Delta_{\Omega}^{D})$ with some constant C

$$N(\lambda, -\Delta_{\Omega}^{D}) \le C |\Omega| \lambda^{d/2}.$$

• Weyl's conjecture.

In H.Weyl ('1911) also conjectured that

$$N(\lambda) = L_{0,d}^{cl} \lambda^{d/2} |\Omega| - c_{d-1} \lambda^{(d-1)/2} |\partial \Omega| + o(\lambda^{(d-1)/2}),$$

where $c_{d-1} > 0$ is a standard term depending only on dimension d.

Under certain conditions on classical billiards in $T^*\Omega$ V.Ivrii ('80) proved this result.

• Easier question.

Is there a constant $C \ge 1$ such that

$$N(\lambda) \le C L_{0,d}^{cl} |\Omega| \lambda^{d/2}$$
?

- * This inequality was proved for bounded domains by Birman & Solomyak ('70) and Ciesielski ('70) with some constant $\tilde{C}>1$.
- * For domains of finite measure and with some $\tilde{C}>1$ it was proved by G.Rosenblum ('71) and E.Lieb ('80).
- * The best known constant is due to Li &Yau ('83).

• The Berezin–Li–Yau inequalities.

Theorem. (AL '93) Let $\Omega \subset \mathbb{R}^d$ be an open set of finite measure and $\lambda > 0$. Then

$$\sum_{k} (\lambda - \lambda_{k})_{+} \leq (2\pi)^{-d} |\Omega| \int_{\mathbb{R}^{d}} (\lambda - |\xi|^{2})_{+} d\xi$$

$$= \lambda^{1+d/2} |\Omega| (2\pi)^{-d} \int_{\mathbb{R}^{d}} (1 - |\xi|^{2})_{+} d\xi.$$

Proof. Let $\Omega \subset \mathbb{R}^d$ be an open set of finite measure. Then the spectrum of $-\Delta_{\Omega}^D$ is discrete. We denote by λ_k the non-decreasing sequence of eigenvalues (counting with multiplicities) and let φ_k be an associated othonormal system of Dirichlet eigenfunctions. Note that these eigenfunctions can be continued by zero outside of Ω to H^1 -functions on \mathbb{R}^d .

For any $\lambda > 0$ we have

$$\sum_{k} (\lambda - \lambda_{k})_{+} = \sum_{k} \left(\int_{\Omega} (\lambda |\varphi_{k}|^{2} - |\nabla \varphi_{k}|^{2}) dx \right)_{+}$$

$$= \sum_{k} \left((2\pi)^{-d} \int_{\mathbb{R}^{d}} (\lambda - |\xi|^{2}) |\widehat{\varphi_{k}}|^{2} d\xi \right)_{+} \leq (2\pi)^{-d} \int_{\mathbb{R}^{d}} (\lambda - |\xi|^{2})_{+} \sum_{k} |\widehat{\varphi_{k}}|^{2} d\xi.$$

Clearly

$$\sum_{k} |\widehat{\varphi_{k}}|^{2} = \sum_{k} |(\varphi_{k}, e^{-ix\xi})_{L^{2}(\Omega)}|^{2} = ||e^{-ix\xi}||^{2} = |\Omega|.$$

The proof is complete.

Corollary. Let $\Omega \subset \mathbb{R}^d$ be an open set of finite measure. Then for all $\lambda > 0$, we have

$$N(\lambda, -\Delta_{\Omega}^{D}) \le \left(1 + \frac{2}{d}\right)^{d/2} L_{0,d}^{cl} |\Omega| \lambda^{d/2}.$$

Proof. Consider

Here $\rho = \eta - \lambda$. Then by the BLY inequality we have

$$N(\lambda, -\Delta_{\Omega}^{D}) \leq \frac{1}{\eta - \lambda} \sum_{k} (\eta - \lambda_{k})_{+} \leq \frac{1}{\eta - \lambda} |\Omega| (2\pi)^{-d} \int_{\mathbb{R}^{d}} (\eta - |\xi|^{2})_{+} d\xi$$
$$= \frac{\eta^{1+d/2}}{\eta - \lambda} |\Omega| (2\pi)^{-d} |\Omega| \int_{\mathbb{R}^{d}} (1 - |\xi|^{2})_{+} d\xi.$$

Minimising wrt η we find $\eta = \lambda \frac{1+d/2}{d/2}$ and obtain the proof.

Remark. Nobody knows if there is a constant C_d : $1 \le C_d < \left(1 + \frac{2}{d}\right)^{d/2}$ such that

$$N(\lambda, -\Delta_{\Omega}^{D}) \le C_d L_{0,d}^{cl} |\Omega| \lambda^{d/2}.$$

Remark. From Ivrii's asymptotics one can obtain

$$\operatorname{Tr}(-\Delta_{\Omega}^{D} - \lambda)_{-} = \sum_{k} (\lambda - \lambda_{k})_{+}$$

$$= L_{1,d}^{cl} |\Omega| \lambda^{1+d/2} - \frac{1}{4} L_{1,d-1}^{cl} |\partial\Omega| \lambda^{1+(d-1)/2} + o\left(\lambda^{1+(d-1)/2}\right).$$

Some uniform wrt λ BLY inequalities with negative remainder terms were obtained in the papers of A.D.Melás; T.Weidl; L.Geisinger, T.Weidl and AL; L.Geisinger and T.Weidl.

- Exercises
- * Let $\Omega \subset \mathbb{R}^d$ be a domain of finite measure and let $-\Delta_{\Omega}^N$ be the Neumann Laplacian defined via its quadratic form

$$\int_{\Omega} |\nabla u|^2 \, dx, \qquad u \in H^1(\Omega).$$

For domains with sufficiently 'good" boundaries the spectrum of $-\Delta_{\Omega}^{N}$ is discrete and consists of eigenvalues $\{\mu_{k}\}_{k=1}^{\infty}$ with $\mu_{1}=0$. It is enough to assume that $H^{1}(\Omega)$ is compactly embedded into $L^{2}(\Omega)$,.

Prove Kröger's inequality ('92) that states

$$\sum_{k} (\mu - \mu_k)_+ \ge \mu^{1+d/2} |\Omega| (2\pi)^{-d} \int (1 - |\xi|^2)_+ d\xi.$$

* Show that the BLY inequality for the Dirichlet Laplacian implies

$$\sum_{k} (\lambda - \lambda_{k})_{+}^{\gamma} \leq \lambda^{\gamma + d/2} |\Omega| (2\pi)^{-d} \int (1 - |\xi|^{2})_{+}^{\gamma} d\xi.$$

We usually use the notation

$$L_{\gamma,d}^{cl} = (2\pi)^{-d} \int (1 - |\xi|^2)_+^{\gamma} d\xi,$$

for any $\gamma > 1$.

• Pólya's inequality for tiling domains (Pólya '61).

Definition.

An open set $\Omega \subset \mathbb{R}^d$ is called tiling if there are countable families of orthogonal matrices $\{R_n\}$ and of vectors $\{a_n\}$ such that the sets

$$\Omega_n = \{R_n x + a_n : x \in \Omega\}$$

satisfy the following two properties

- (1) $\Omega_n \cap \Omega_m = \emptyset$, if $n \neq m$,
- $(2) \left| \mathbb{R}^d \setminus \cup \Omega_n \right| = 0.$

Of course, triangles, parallelograms, regular hexagons are examples of tiling domains but there are more exotic examples.

Theorem. (Pólya '61)

Let $\Omega \subset \mathbb{R}^d$ be a bounded open set which is tiling. Then for any $\lambda > 0$,

$$N(\lambda, -\Delta_{\Omega}^{D}) \le L_{0,d}^{cl} |\Omega| \lambda^{d/2}.$$

Proof.

For L > 0 we introduce the cube $Q_L = (-L/2, L/2)^d$ and the sets

$$J_L = \{n : \Omega_n \subset Q_L\} \qquad \Omega^L = \operatorname{int} \left(\bigcup_{n \in J_L} \overline{\Omega_n} \right) \subset Q_L.$$

Moreover, by property (2) in the definition of the tiling domain

$$\lim_{L \to \infty} L^{-d} \# J_L = |\Omega|^{-1}.$$

We have the operator inequalities

$$-\Delta_{Q_L}^D \le -\Delta_{\Omega^L}^D \le \bigoplus_{n \in J_L} (-\Delta_{\Omega_n}^D).$$

Since all the domains Ω_n are congruent to Ω , the Laplacians $-\Delta_{\Omega_n}^D$ are unitarily equivalent to $-\Delta_{\Omega}^D$. Hence

$$N(\lambda, -\Delta_{Q_L}^D) \ge N\left(\lambda, \bigoplus_{n \in J_L} (-\Delta_{\Omega_n}^D)\right) = (\#J_L) N(\lambda, -\Delta_{\Omega}^D)$$

or

$$N(\lambda, -\Delta_{\Omega}^{D}) \le \frac{L^d}{\#J_L} \frac{N(\lambda, -\Delta_{Q_L}^{D})}{L^d}.$$

By using scaling $x\to x/L$, note, that $-\Delta_{Q_L}^D$ is unitarily equivalent to the operator $-L^{-2}\Delta_{Q_1}^D$ in $L^2(Q_1)$. Hence

$$N(\lambda, -\Delta_{Q_L}^D) = N(L^2 \lambda, -\Delta_{Q_1}^D).$$

Let us consider the Dirichlet Laplacian $-\Delta_{Q_1}^D$ in $L^2(Q_1)$. The eigenvalues and eigenfunctions of this operator are

$$\psi_n(x) = \prod_j \sin(\pi(x+1/2)n_j), \ x \in (-1/2, 1/2), \text{ and } \lambda_n = \pi^2 |n|^2,$$

where $n = (n_1, n_2, \dots, n_d) \in \mathbb{N}^d$ and $|n|^2 = n_1^2 + n_2^2 + \dots + n_d^2$. Then

$$N(\lambda, -\Delta_{Q_1}^D) = \# \left\{ n : |n|^2 < \lambda/\pi^2 \right\}$$

$$\sim \frac{1}{2^d} \int_{|\xi|^2 < \lambda/\pi^2} d\xi = \frac{1}{(2\pi)^d} \lambda^{d/2} \int_{|\xi| < 1} d\xi$$

$$= \lambda^{d/2} L_{0,d}^{cl}, \quad \text{as } \lambda \to \infty.$$

This is the "Weyl" asymptotic law for cubes.

We now have as $L \to \infty$

$$\lim_{L \to \infty} L^{-d} \, N(\lambda, -\Delta_{Q_L}^D) = \lambda^{d/2} \, \lim_{L \to \infty} (L^2 \lambda)^{-d/2} \, N(L^2 \, \lambda, -\Delta_{Q_1}^D) = \lambda^{d/2} L_{0,d}^{cl}.$$

Thus, since $\lim_{L\to\infty} L^{-d} \# J_L = |\Omega|^{-1}$ we obtain

$$N(\lambda, -\Delta_{\Omega}^{D}) \le \frac{L^{d}}{\#J_{L}} \frac{N(\lambda, -\Delta_{Q_{L}}^{D})}{L^{d}} \to |\Omega| \lambda^{d/2} L_{0,d}^{cl}, \quad \text{as } L \to \infty.$$

Remark. Obviously the two dimensional disc is not a tiling domain.

Very recently M.Levitin, I.Polterovich and D.A.Sher have proved Pólya's conjecture for the unit disc. You can find it in:

https://arxiv.org/pdf/2203.07696.pdf

• Pólya's inequality for product domains.

Theorem. Let $d = d_1 + d_2$ with $d_1 \ge 2$ and $d_2 \ge 1$. Let $\Omega_1 \subset \mathbb{R}^{d_1}$ and $\Omega_2 \subset \mathbb{R}^{d_2}$ be open sets of finite measure and assume that

$$N(\lambda, -\Delta_{\Omega_1}^D) \le L_{0,d_1}^{cl} \lambda^{d_1/2} |\Omega_1|, \quad \forall \lambda > 0.$$

Then for $\Omega = \Omega_1 \times \Omega_2$

$$N(\lambda, -\Delta_{\Omega}^{D}) \le L_{0,d}^{cl} \lambda^{d/2} |\Omega|, \quad \forall \lambda > 0.$$

Proof. Let $\{\lambda_n^{(j)}\}$, $n \in \mathbb{N}$, be the eigenvalues of $-\Delta_{\Omega_j}^D$. Then the eigenvalues of $-\Delta_{\Omega}^D$ are given by $\lambda_n^{(1)} + \lambda_m^{(2)}$, $(n, m) \in \mathbb{N} \times \mathbb{N}$.

Then

$$N(\lambda, -\Delta_{\Omega}^{D}) = \# \left\{ (n, m) : \lambda_{n}^{(1)} + \lambda_{m}^{(2)} < \lambda \right\}$$

$$= \sum_{m} \# \left\{ n \in \mathbb{N} : \lambda_{n}^{(1)} < \lambda - \lambda_{m}^{(2)} \right\} = \sum_{m} N \left(\lambda - \lambda_{m}^{(2)}, -\Delta_{\Omega_{1}}^{D} \right)$$

$$\leq L_{0,d_{1}}^{cl} |\Omega_{1}| \sum_{m} (\lambda - \lambda_{m})_{+}^{d_{1}/2} \leq L_{0,d_{1}}^{cl} L_{d_{1}/2,d_{2}}^{cl} |\Omega_{1}| |\Omega_{2}| \lambda^{(d_{1}+d_{2})/2},$$

where

$$L_{\gamma,d}^{cl} = (2\pi)^{-d} \int_{\mathbb{R}^d} (1 - |\xi|^2)_+^{\gamma} d\xi.$$

It remains to show that

$$L_{0,d}^{cl} = L_{0,d_1}^{cl} L_{d_1/2,d_2}^{cl}.$$

Indeed

$$L_{0,d}^{cl} = (2\pi)^{-d} \left| \left\{ (\xi_1, \xi_2) : |\xi_1|^2 + |\xi_2|^2 < 1 \right\} \right|$$

$$(2\pi)^{-d_2} \int_{\mathbb{R}^{d_2}} (2\pi)^{-d_1} \left| \left\{ \xi_1 : |\xi_1|^2 < (1 - |\xi_2|^2)_+ \right\} \right| d\xi_2$$

$$= L_{0,d_1}^{cl} (2\pi)^{-d_2} \int_{\mathbb{R}^{d_2}} (1 - |\xi_2|^2)_+^{d_1/2} d\xi_2$$

$$= L_{0,d_1}^{cl} L_{d_1/2,d_2}^{cl}.$$

Thank you