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Lecture 1



Plan

e Functional inequalities (Sobolev inequalities, Hardy inequalities)
e Spectrum of Dirichlet Laplacian

e Some basic facts from Spectral Theory of Schrodinger operators
e Lieb-Thirring inequalities

e (alogero inequalities

e Spectrum of functional-difference operators

It is assumed that the students passed the standard Functional Analysis course
+ a course in Theory of Distribution.
e Recommended literature:

Book: ”Schrodinger Operators: Eigenvalues and Lieb—Thirring Inequalities” by
R.Frank, A.Laptev and T.Weidl, see



e Hardy inequality on R, .

Let Ry = (0, 00).
Theorem. For any u € H} (R, ) the following bound holds true
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Proof. We begin by considering functions in C§°(R,). Integration by part we
obtain

/OOO u(z)]? dr < _|'LL(£C)\2|°° 4 9Re /Ooomu/(x) -

2 T 0

<2 (/OOO W.SULQ)P daz) 2 (/OOO \u’(aj)\de) 1/2.

The constant on the right side is optimal but never achieved.




e Hardy inequality on R?, d > 3.

Theorem. Let d > 3. Then for any v € H'(R?) we have
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Proof. Let a € R. We have
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Letting a = (d — 2)/2 we find
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The latter should be understood in the sense of quadratic forms, namely

d—2\° 2
|V’UJ(ZC)‘2 dr = (—AU,U)LQ(Rd) > <—) / ‘U($)| dx.
Rd

2 ]2

Rd

The proof is complete.



e Non-increasing rearrangement.

Definition. The distribution function of a Lebesgue measurable function u on
an open subset Q C RY is the map i, : [0,00) — [0, 00) defined by

po(A) =meas{z € Q: |u(x)| > A}

The non-increasing rearrangement of u is the function u* : [0,00) — [0, 00)
defined by
u*(t) = inf{\ € [0,00) : p, (M) < t}.

The rearrangement preserves the LP(R?), 1 < p < oo class of functions and

HU’HLP(Rd) — HU*HLP(Rd)-

Theorem. (Pdélya-Szegd) Let 1 < p. Then

IVu™|[Le@ay < [[Vull Lo ra)-



e Sobolev inequality.
Hardy inequality implied Sobolev inequality.

Theorem. Let d > 3 and ¢ = 2d/(d — 2). Then there is a constant S; such

that
q/2
(/ |Vu|2dx) > Sd/ [u|? dx.
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e Sobolev inequality.
Hardy inequality implied Sobolev inequality (R. Seiringer '09)
Theorem. Let d > 3 and ¢ = 2d/(d — 2). Then there is a constant Sy such

that
q/2
(/ |Vu\2d:c> > Sd/ [u|? dx.
Rd Rd

Proof. Note that |V]u|| < |Vu|. Therefore it is enough to consider u > 0. Since
|ullLrray = [|u* || Lp(ray and ||Vu* || pgay < ||Vl ppway We can consider u that
are non-negative, radial and non-increasing.

For any y € R? and 0 < a < 1 we have

/ ul(x)dr > / ul dz > Cyly|%u?(y)
Rd

aly|<|z|<|y|

with Cy = (1 — a)™/|S?1|. Thus

2/d
(/ W:c)dw) u?(y) |yl =2 = C2/ 4y 2uy/ 4 (y) u(y) |y| 2
Rd

= Gy PR (y).

Choosing ¢ = 2* = 2d/(d — 2) we obtain 2¢q/d + 2 = 2* and we find

2/d o* 2% 2/d u2(y)
o u” (y)dy < u” (y) dy dz.
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Finally by using Hardy’s inequality we conclude

1-2/d 9 \?2
Cc2l/d (/ u? () dy) < (ﬁ) / Vu(z)]? dz.
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e Sobolev inequality does not imply Hardy inequality, see
book “The Geometry and Analysis of Hardy’s Inequality” by A .A. Balinsky,
W.D. Evans, R.T. Lewis.

Indeed, the reverse implication can be obtained only in terms of the weak spaces
L%°°(R?) defined as the space of Lebesgue measurable functions v on R such
that
||| 2.0 (ra) = SUP T 11 (F) < 00, t >0,
t>0
where f1,,(t) = meas {x € R : |u(z)]| > t}.

It is easy to show that

|lull 200 ®ay < [lullp2®ay  and  [[uf| 2.0 re) = [[u*]| L2.0 (Ra)-

From Sobolev’s inequality we can only obtain

J_o\Yd /g \1/2
‘ < <—> (—) Wd—1 / Vu(z)|?dx, d>2.
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e Corollary of Sobolev’s inequality.

Corollary. There is a constant Cy > 0 such that for any open set Q C R? of
finite measure and any u € H}(Q)

Cqd
2 2
/Q|Vu\ dx > QP /Q\u| dx.

Proof. Using Holder’s inequality we obtain

(d—2)/d
/ u|? de < |Q%/? (/ || 24/ (d=2) d:l?.) < 541|042 / Vul|* d.
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e Dirichlet Laplacian.

Consider the Dirichlet Laplacian —AL in L?(), where Q C R? is a domain of

finite measure
Hu= —-A§fu = \u, ulon = 0.

The operator H is defined by its quadratic form

(Hu,uw)r2(0) :/ Vul|? de,
Q

defined on H}(Q) = C° ().



e Faber—Krahn inequality.

Proposition. Let A\; be the lowest eigenvalue of the Dirichlet Laplacian. Then

OF

Remark. The optimal constant occurs when (2 is a ball and can be expressed in
terms of a zero of a Bessel function.

In particular we also obtain

Corollary. Let \; be the lowest eigenvalue of the Dirichlet Laplacian —AX.

Then
Al(—AgDz) > 0.



e Magnetic Hardy inequality with AB-vector potetial in R?.

Let introduce an Aharonov-Bohm vector potential

—T2 I

A(‘CE) — o ( ‘£U|2 ) ’ZC|2> ) L = (331,332) < R27

where a € R\ Z.
Theorem. Let v € H}(R?\ {0}). Then

. 1(1V — A(z))u(z)|* de > %161% In — al? / u(@)] dx.



Proof. Let (r,0) be polar coordinates in R?. Consider the Fourier decomposition

u(r,0) = Z U (r)e™"Y.

neL
Then
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The proof is complete.



e Hardy’s inequality on antisymmetric functions.

By HY(R?) c H'(R?) we denote a class of antisymmetric functions satisfying
the following antisymmetry conditions:

where = (21, 22,...,2y5) € RY.

Consider polar coordinates = = (r,6), r € (0,00), and # € S®~1. Then

o0 ou
Vul|?dz = / / —
/Rd‘ ‘ 0 §d—1 ( or

Let ) be the orthonormal system of spherical harmonic functions on S¢~! and
let Y4 C )V be the orthonormal subset of the set )/ that are restrictions of totally
antisymmetric homogeneous harmonic polynomials. For any u € H}l(RN ) we

have
u(r,0) = Y u(r)Yi(0).
kE:Yi,eYa

2
1
+ = |V9u2> r4=1 dfdr.
r



Denote by M (d) the smallest integer so that there is an antisymmetric harmonic
homogeneous polynomial Pysqy #Z 0 with degree M (d).

One of such harmonic polynomials could be represented by the Vandermonde
determinant

1 1 1 e 1
L1 L2 L3 Ld
Vi(z) = | =f T3 r3 ... 14
O R N
that implies that
d(d—1
M(d) = ( 5 )

Denote by Yjrq) the restriction of V4 to S4=1. Then if —Ay is the Laplace-
Beltrami operator on S?~! we have

Ao Yara) (@) = M)(M(d) +d — 2) Yara) () = Aty Yar(a) (@),
where

d(d — 1)(d2 + d — 4)
AM(d) = 1 .




Theorem. (Th. Hoffmann-Ostenhof & AL, ’21)
Let u € HY(R%), d > 2. Then

2
Vul* de > C’A(d)/ ‘ﬂda:,
R4

where

Ca(d) = Appeay +

Remark. If d = 2 then the lowest eigenvalue on the Laplace-Beltrami operator

on the circle equals one and therefore for functions u(xq,x2) = —u(xs, 1) we
have
2 |U|2
Vu|*dx > g dT
R2 R2 ||

Remark. Note that the constant Cy(d) ~ d*/4 compared with the classical
Hardy’s constant that grows as d?/4, as d — 0.



Proof. Using polar coordinates we have

> ou
Vul|?dz = / / —
Rd| | 0 gd—1 ( or

For any u € H(R%) we consider u(r, ) = D kiviey, Wk(1)Y(6). Then

2
1
+ 2V9u2> r¢=1 dodr.
r

/ Vou(r,0)>do = > Aplug(r)]?
gd—1

k=M (d)
> AM(d) Z [k (r)1? = Anra) / [u(r,0)|° do.
k=M (d) Se-t

For the radial part we use the classical Hardy inequality on the half-line
0O 2 2 o' 2
— 2
/ rd=t dr > —<d ) / ﬂ rd=1 dr,
0 0

4 r?
Finally we arrive at

|Vu|2da:2/ /
Rd 0 Sd—l
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Open Problem. What is the best constant in the Sobolev inequality on antisym-
metric functions.



e Versions of Hardy-Sobolev type inequalities.

Theorem. Let u € H}(R?) and let 0 < 9 < 1. Then there is a constant C5

such that
! 1—9
1—9
Ca 9 /’“’ de| < | |Vul?dz.
’ Rz |x|? R2

Theorem. Let d > 3, p = %, 0<v<1 andfy:QdC}’;;Zlﬁ. Then

2/p
Ca. (/ \:U\V\u\pda:) §/ \Vu|2da:, u € H}X(Rd),
Rd Rd

with some C(d, ) > 0.



Thank you



